1 /* e_j0f.c -- float version of e_j0.c.
2 * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
3 */
4
5 /*
6 * ====================================================
7 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8 *
9 * Developed at SunPro, a Sun Microsystems, Inc. business.
10 * Permission to use, copy, modify, and distribute this
11 * software is freely granted, provided that this notice
12 * is preserved.
13 * ====================================================
14 */
15
16 #include <sys/cdefs.h>
17 __FBSDID("$FreeBSD: head/lib/msun/src/e_j0f.c 343953 2019-02-10 08:46:07Z peterj $");
18
19 /*
20 * See e_j0.c for complete comments.
21 */
22
23 #include "math.h"
24 #include "math_private.h"
25
26 static __inline float pzerof(float), qzerof(float);
27
28 static const volatile float vone = 1, vzero = 0;
29
30 static const float
31 huge = 1e30,
32 one = 1.0,
33 invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */
34 tpi = 6.3661974669e-01, /* 0x3f22f983 */
35 /* R0/S0 on [0, 2.00] */
36 R02 = 1.5625000000e-02, /* 0x3c800000 */
37 R03 = -1.8997929874e-04, /* 0xb947352e */
38 R04 = 1.8295404516e-06, /* 0x35f58e88 */
39 R05 = -4.6183270541e-09, /* 0xb19eaf3c */
40 S01 = 1.5619102865e-02, /* 0x3c7fe744 */
41 S02 = 1.1692678527e-04, /* 0x38f53697 */
42 S03 = 5.1354652442e-07, /* 0x3509daa6 */
43 S04 = 1.1661400734e-09; /* 0x30a045e8 */
44
45 static const float zero = 0, qrtr = 0.25;
46
47 float
__ieee754_j0f(float x)48 __ieee754_j0f(float x)
49 {
50 float z, s,c,ss,cc,r,u,v;
51 int32_t hx,ix;
52
53 GET_FLOAT_WORD(hx,x);
54 ix = hx&0x7fffffff;
55 if(ix>=0x7f800000) return one/(x*x);
56 x = fabsf(x);
57 if(ix >= 0x40000000) { /* |x| >= 2.0 */
58 sincosf(x, &s, &c);
59 ss = s-c;
60 cc = s+c;
61 if(ix<0x7f000000) { /* Make sure x+x does not overflow. */
62 z = -cosf(x+x);
63 if ((s*c)<zero) cc = z/ss;
64 else ss = z/cc;
65 }
66 /*
67 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
68 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
69 */
70 if(ix>0x58000000) z = (invsqrtpi*cc)/sqrtf(x); /* |x|>2**49 */
71 else {
72 u = pzerof(x); v = qzerof(x);
73 z = invsqrtpi*(u*cc-v*ss)/sqrtf(x);
74 }
75 return z;
76 }
77 if(ix<0x3b000000) { /* |x| < 2**-9 */
78 if(huge+x>one) { /* raise inexact if x != 0 */
79 if(ix<0x39800000) return one; /* |x|<2**-12 */
80 else return one - x*x/4;
81 }
82 }
83 z = x*x;
84 r = z*(R02+z*(R03+z*(R04+z*R05)));
85 s = one+z*(S01+z*(S02+z*(S03+z*S04)));
86 if(ix < 0x3F800000) { /* |x| < 1.00 */
87 return one + z*((r/s)-qrtr);
88 } else {
89 u = x/2;
90 return((one+u)*(one-u)+z*(r/s));
91 }
92 }
93
94 static const float
95 u00 = -7.3804296553e-02, /* 0xbd9726b5 */
96 u01 = 1.7666645348e-01, /* 0x3e34e80d */
97 u02 = -1.3818567619e-02, /* 0xbc626746 */
98 u03 = 3.4745343146e-04, /* 0x39b62a69 */
99 u04 = -3.8140706238e-06, /* 0xb67ff53c */
100 u05 = 1.9559013964e-08, /* 0x32a802ba */
101 u06 = -3.9820518410e-11, /* 0xae2f21eb */
102 v01 = 1.2730483897e-02, /* 0x3c509385 */
103 v02 = 7.6006865129e-05, /* 0x389f65e0 */
104 v03 = 2.5915085189e-07, /* 0x348b216c */
105 v04 = 4.4111031494e-10; /* 0x2ff280c2 */
106
107 float
__ieee754_y0f(float x)108 __ieee754_y0f(float x)
109 {
110 float z, s,c,ss,cc,u,v;
111 int32_t hx,ix;
112
113 GET_FLOAT_WORD(hx,x);
114 ix = 0x7fffffff&hx;
115 if(ix>=0x7f800000) return vone/(x+x*x);
116 if(ix==0) return -one/vzero;
117 if(hx<0) return vzero/vzero;
118 if(ix >= 0x40000000) { /* |x| >= 2.0 */
119 /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
120 * where x0 = x-pi/4
121 * Better formula:
122 * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
123 * = 1/sqrt(2) * (sin(x) + cos(x))
124 * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
125 * = 1/sqrt(2) * (sin(x) - cos(x))
126 * To avoid cancellation, use
127 * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
128 * to compute the worse one.
129 */
130 sincosf(x, &s, &c);
131 ss = s-c;
132 cc = s+c;
133 /*
134 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
135 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
136 */
137 if(ix<0x7f000000) { /* make sure x+x not overflow */
138 z = -cosf(x+x);
139 if ((s*c)<zero) cc = z/ss;
140 else ss = z/cc;
141 }
142 if(ix>0x58000000) z = (invsqrtpi*ss)/sqrtf(x); /* |x|>2**49 */
143 else {
144 u = pzerof(x); v = qzerof(x);
145 z = invsqrtpi*(u*ss+v*cc)/sqrtf(x);
146 }
147 return z;
148 }
149 if(ix<=0x39000000) { /* x < 2**-13 */
150 return(u00 + tpi*__ieee754_logf(x));
151 }
152 z = x*x;
153 u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
154 v = one+z*(v01+z*(v02+z*(v03+z*v04)));
155 return(u/v + tpi*(__ieee754_j0f(x)*__ieee754_logf(x)));
156 }
157
158 /* The asymptotic expansions of pzero is
159 * 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x.
160 * For x >= 2, We approximate pzero by
161 * pzero(x) = 1 + (R/S)
162 * where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
163 * S = 1 + pS0*s^2 + ... + pS4*s^10
164 * and
165 * | pzero(x)-1-R/S | <= 2 ** ( -60.26)
166 */
167 static const float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
168 0.0000000000e+00, /* 0x00000000 */
169 -7.0312500000e-02, /* 0xbd900000 */
170 -8.0816707611e+00, /* 0xc1014e86 */
171 -2.5706311035e+02, /* 0xc3808814 */
172 -2.4852163086e+03, /* 0xc51b5376 */
173 -5.2530439453e+03, /* 0xc5a4285a */
174 };
175 static const float pS8[5] = {
176 1.1653436279e+02, /* 0x42e91198 */
177 3.8337448730e+03, /* 0x456f9beb */
178 4.0597855469e+04, /* 0x471e95db */
179 1.1675296875e+05, /* 0x47e4087c */
180 4.7627726562e+04, /* 0x473a0bba */
181 };
182 static const float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
183 -1.1412546255e-11, /* 0xad48c58a */
184 -7.0312492549e-02, /* 0xbd8fffff */
185 -4.1596107483e+00, /* 0xc0851b88 */
186 -6.7674766541e+01, /* 0xc287597b */
187 -3.3123129272e+02, /* 0xc3a59d9b */
188 -3.4643338013e+02, /* 0xc3ad3779 */
189 };
190 static const float pS5[5] = {
191 6.0753936768e+01, /* 0x42730408 */
192 1.0512523193e+03, /* 0x44836813 */
193 5.9789707031e+03, /* 0x45bad7c4 */
194 9.6254453125e+03, /* 0x461665c8 */
195 2.4060581055e+03, /* 0x451660ee */
196 };
197
198 static const float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
199 -2.5470459075e-09, /* 0xb12f081b */
200 -7.0311963558e-02, /* 0xbd8fffb8 */
201 -2.4090321064e+00, /* 0xc01a2d95 */
202 -2.1965976715e+01, /* 0xc1afba52 */
203 -5.8079170227e+01, /* 0xc2685112 */
204 -3.1447946548e+01, /* 0xc1fb9565 */
205 };
206 static const float pS3[5] = {
207 3.5856033325e+01, /* 0x420f6c94 */
208 3.6151397705e+02, /* 0x43b4c1ca */
209 1.1936077881e+03, /* 0x44953373 */
210 1.1279968262e+03, /* 0x448cffe6 */
211 1.7358093262e+02, /* 0x432d94b8 */
212 };
213
214 static const float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
215 -8.8753431271e-08, /* 0xb3be98b7 */
216 -7.0303097367e-02, /* 0xbd8ffb12 */
217 -1.4507384300e+00, /* 0xbfb9b1cc */
218 -7.6356959343e+00, /* 0xc0f4579f */
219 -1.1193166733e+01, /* 0xc1331736 */
220 -3.2336456776e+00, /* 0xc04ef40d */
221 };
222 static const float pS2[5] = {
223 2.2220300674e+01, /* 0x41b1c32d */
224 1.3620678711e+02, /* 0x430834f0 */
225 2.7047027588e+02, /* 0x43873c32 */
226 1.5387539673e+02, /* 0x4319e01a */
227 1.4657617569e+01, /* 0x416a859a */
228 };
229
230 static __inline float
pzerof(float x)231 pzerof(float x)
232 {
233 const float *p,*q;
234 float z,r,s;
235 int32_t ix;
236 GET_FLOAT_WORD(ix,x);
237 ix &= 0x7fffffff;
238 if(ix>=0x41000000) {p = pR8; q= pS8;}
239 else if(ix>=0x409173eb){p = pR5; q= pS5;}
240 else if(ix>=0x4036d917){p = pR3; q= pS3;}
241 else {p = pR2; q= pS2;} /* ix>=0x40000000 */
242 z = one/(x*x);
243 r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
244 s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
245 return one+ r/s;
246 }
247
248
249 /* For x >= 8, the asymptotic expansions of qzero is
250 * -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
251 * We approximate pzero by
252 * qzero(x) = s*(-1.25 + (R/S))
253 * where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
254 * S = 1 + qS0*s^2 + ... + qS5*s^12
255 * and
256 * | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22)
257 */
258 static const float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
259 0.0000000000e+00, /* 0x00000000 */
260 7.3242187500e-02, /* 0x3d960000 */
261 1.1768206596e+01, /* 0x413c4a93 */
262 5.5767340088e+02, /* 0x440b6b19 */
263 8.8591972656e+03, /* 0x460a6cca */
264 3.7014625000e+04, /* 0x471096a0 */
265 };
266 static const float qS8[6] = {
267 1.6377603149e+02, /* 0x4323c6aa */
268 8.0983447266e+03, /* 0x45fd12c2 */
269 1.4253829688e+05, /* 0x480b3293 */
270 8.0330925000e+05, /* 0x49441ed4 */
271 8.4050156250e+05, /* 0x494d3359 */
272 -3.4389928125e+05, /* 0xc8a7eb69 */
273 };
274
275 static const float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
276 1.8408595828e-11, /* 0x2da1ec79 */
277 7.3242180049e-02, /* 0x3d95ffff */
278 5.8356351852e+00, /* 0x40babd86 */
279 1.3511157227e+02, /* 0x43071c90 */
280 1.0272437744e+03, /* 0x448067cd */
281 1.9899779053e+03, /* 0x44f8bf4b */
282 };
283 static const float qS5[6] = {
284 8.2776611328e+01, /* 0x42a58da0 */
285 2.0778142090e+03, /* 0x4501dd07 */
286 1.8847289062e+04, /* 0x46933e94 */
287 5.6751113281e+04, /* 0x475daf1d */
288 3.5976753906e+04, /* 0x470c88c1 */
289 -5.3543427734e+03, /* 0xc5a752be */
290 };
291
292 static const float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
293 4.3774099900e-09, /* 0x3196681b */
294 7.3241114616e-02, /* 0x3d95ff70 */
295 3.3442313671e+00, /* 0x405607e3 */
296 4.2621845245e+01, /* 0x422a7cc5 */
297 1.7080809021e+02, /* 0x432acedf */
298 1.6673394775e+02, /* 0x4326bbe4 */
299 };
300 static const float qS3[6] = {
301 4.8758872986e+01, /* 0x42430916 */
302 7.0968920898e+02, /* 0x44316c1c */
303 3.7041481934e+03, /* 0x4567825f */
304 6.4604252930e+03, /* 0x45c9e367 */
305 2.5163337402e+03, /* 0x451d4557 */
306 -1.4924745178e+02, /* 0xc3153f59 */
307 };
308
309 static const float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
310 1.5044444979e-07, /* 0x342189db */
311 7.3223426938e-02, /* 0x3d95f62a */
312 1.9981917143e+00, /* 0x3fffc4bf */
313 1.4495602608e+01, /* 0x4167edfd */
314 3.1666231155e+01, /* 0x41fd5471 */
315 1.6252708435e+01, /* 0x4182058c */
316 };
317 static const float qS2[6] = {
318 3.0365585327e+01, /* 0x41f2ecb8 */
319 2.6934811401e+02, /* 0x4386ac8f */
320 8.4478375244e+02, /* 0x44533229 */
321 8.8293585205e+02, /* 0x445cbbe5 */
322 2.1266638184e+02, /* 0x4354aa98 */
323 -5.3109550476e+00, /* 0xc0a9f358 */
324 };
325
326 static __inline float
qzerof(float x)327 qzerof(float x)
328 {
329 static const float eighth = 0.125;
330 const float *p,*q;
331 float s,r,z;
332 int32_t ix;
333 GET_FLOAT_WORD(ix,x);
334 ix &= 0x7fffffff;
335 if(ix>=0x41000000) {p = qR8; q= qS8;}
336 else if(ix>=0x409173eb){p = qR5; q= qS5;}
337 else if(ix>=0x4036d917){p = qR3; q= qS3;}
338 else {p = qR2; q= qS2;} /* ix>=0x40000000 */
339 z = one/(x*x);
340 r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
341 s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
342 return (r/s-eighth)/x;
343 }
344