1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2005-2011 David Schultz <das@FreeBSD.ORG>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD: head/lib/msun/src/s_fmal.c 326219 2017-11-26 02:00:33Z pfg $");
31
32 #include <fenv.h>
33 #include <float.h>
34 #include <math.h>
35
36 #include "fpmath.h"
37
38 /*
39 * A struct dd represents a floating-point number with twice the precision
40 * of a long double. We maintain the invariant that "hi" stores the high-order
41 * bits of the result.
42 */
43 struct dd {
44 long double hi;
45 long double lo;
46 };
47
48 /*
49 * Compute a+b exactly, returning the exact result in a struct dd. We assume
50 * that both a and b are finite, but make no assumptions about their relative
51 * magnitudes.
52 */
53 static inline struct dd
dd_add(long double a,long double b)54 dd_add(long double a, long double b)
55 {
56 struct dd ret;
57 long double s;
58
59 ret.hi = a + b;
60 s = ret.hi - a;
61 ret.lo = (a - (ret.hi - s)) + (b - s);
62 return (ret);
63 }
64
65 /*
66 * Compute a+b, with a small tweak: The least significant bit of the
67 * result is adjusted into a sticky bit summarizing all the bits that
68 * were lost to rounding. This adjustment negates the effects of double
69 * rounding when the result is added to another number with a higher
70 * exponent. For an explanation of round and sticky bits, see any reference
71 * on FPU design, e.g.,
72 *
73 * J. Coonen. An Implementation Guide to a Proposed Standard for
74 * Floating-Point Arithmetic. Computer, vol. 13, no. 1, Jan 1980.
75 */
76 static inline long double
add_adjusted(long double a,long double b)77 add_adjusted(long double a, long double b)
78 {
79 struct dd sum;
80 union IEEEl2bits u;
81
82 sum = dd_add(a, b);
83 if (sum.lo != 0) {
84 u.e = sum.hi;
85 if ((u.bits.manl & 1) == 0)
86 sum.hi = nextafterl(sum.hi, INFINITY * sum.lo);
87 }
88 return (sum.hi);
89 }
90
91 /*
92 * Compute ldexp(a+b, scale) with a single rounding error. It is assumed
93 * that the result will be subnormal, and care is taken to ensure that
94 * double rounding does not occur.
95 */
96 static inline long double
add_and_denormalize(long double a,long double b,int scale)97 add_and_denormalize(long double a, long double b, int scale)
98 {
99 struct dd sum;
100 int bits_lost;
101 union IEEEl2bits u;
102
103 sum = dd_add(a, b);
104
105 /*
106 * If we are losing at least two bits of accuracy to denormalization,
107 * then the first lost bit becomes a round bit, and we adjust the
108 * lowest bit of sum.hi to make it a sticky bit summarizing all the
109 * bits in sum.lo. With the sticky bit adjusted, the hardware will
110 * break any ties in the correct direction.
111 *
112 * If we are losing only one bit to denormalization, however, we must
113 * break the ties manually.
114 */
115 if (sum.lo != 0) {
116 u.e = sum.hi;
117 bits_lost = -u.bits.exp - scale + 1;
118 if ((bits_lost != 1) ^ (int)(u.bits.manl & 1))
119 sum.hi = nextafterl(sum.hi, INFINITY * sum.lo);
120 }
121 return (ldexp(sum.hi, scale));
122 }
123
124 /*
125 * Compute a*b exactly, returning the exact result in a struct dd. We assume
126 * that both a and b are normalized, so no underflow or overflow will occur.
127 * The current rounding mode must be round-to-nearest.
128 */
129 static inline struct dd
dd_mul(long double a,long double b)130 dd_mul(long double a, long double b)
131 {
132 #if LDBL_MANT_DIG == 64
133 static const long double split = 0x1p32L + 1.0;
134 #elif LDBL_MANT_DIG == 113
135 static const long double split = 0x1p57L + 1.0;
136 #endif
137 struct dd ret;
138 long double ha, hb, la, lb, p, q;
139
140 p = a * split;
141 ha = a - p;
142 ha += p;
143 la = a - ha;
144
145 p = b * split;
146 hb = b - p;
147 hb += p;
148 lb = b - hb;
149
150 p = ha * hb;
151 q = ha * lb + la * hb;
152
153 ret.hi = p + q;
154 ret.lo = p - ret.hi + q + la * lb;
155 return (ret);
156 }
157
158 /*
159 * Fused multiply-add: Compute x * y + z with a single rounding error.
160 *
161 * We use scaling to avoid overflow/underflow, along with the
162 * canonical precision-doubling technique adapted from:
163 *
164 * Dekker, T. A Floating-Point Technique for Extending the
165 * Available Precision. Numer. Math. 18, 224-242 (1971).
166 */
167 long double
fmal(long double x,long double y,long double z)168 fmal(long double x, long double y, long double z)
169 {
170 long double xs, ys, zs, adj;
171 struct dd xy, r;
172 int oround;
173 int ex, ey, ez;
174 int spread;
175
176 /*
177 * Handle special cases. The order of operations and the particular
178 * return values here are crucial in handling special cases involving
179 * infinities, NaNs, overflows, and signed zeroes correctly.
180 */
181 if (x == 0.0 || y == 0.0)
182 return (x * y + z);
183 if (z == 0.0)
184 return (x * y);
185 if (!isfinite(x) || !isfinite(y))
186 return (x * y + z);
187 if (!isfinite(z))
188 return (z);
189
190 xs = frexpl(x, &ex);
191 ys = frexpl(y, &ey);
192 zs = frexpl(z, &ez);
193 oround = fegetround();
194 spread = ex + ey - ez;
195
196 /*
197 * If x * y and z are many orders of magnitude apart, the scaling
198 * will overflow, so we handle these cases specially. Rounding
199 * modes other than FE_TONEAREST are painful.
200 */
201 if (spread < -LDBL_MANT_DIG) {
202 feraiseexcept(FE_INEXACT);
203 if (!isnormal(z))
204 feraiseexcept(FE_UNDERFLOW);
205 switch (oround) {
206 case FE_TONEAREST:
207 return (z);
208 case FE_TOWARDZERO:
209 if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
210 return (z);
211 else
212 return (nextafterl(z, 0));
213 case FE_DOWNWARD:
214 if (x > 0.0 ^ y < 0.0)
215 return (z);
216 else
217 return (nextafterl(z, -INFINITY));
218 default: /* FE_UPWARD */
219 if (x > 0.0 ^ y < 0.0)
220 return (nextafterl(z, INFINITY));
221 else
222 return (z);
223 }
224 }
225 if (spread <= LDBL_MANT_DIG * 2)
226 zs = ldexpl(zs, -spread);
227 else
228 zs = copysignl(LDBL_MIN, zs);
229
230 fesetround(FE_TONEAREST);
231 /* work around clang bug 8100 */
232 volatile long double vxs = xs;
233
234 /*
235 * Basic approach for round-to-nearest:
236 *
237 * (xy.hi, xy.lo) = x * y (exact)
238 * (r.hi, r.lo) = xy.hi + z (exact)
239 * adj = xy.lo + r.lo (inexact; low bit is sticky)
240 * result = r.hi + adj (correctly rounded)
241 */
242 xy = dd_mul(vxs, ys);
243 r = dd_add(xy.hi, zs);
244
245 spread = ex + ey;
246
247 if (r.hi == 0.0) {
248 /*
249 * When the addends cancel to 0, ensure that the result has
250 * the correct sign.
251 */
252 fesetround(oround);
253 volatile long double vzs = zs; /* XXX gcc CSE bug workaround */
254 return (xy.hi + vzs + ldexpl(xy.lo, spread));
255 }
256
257 if (oround != FE_TONEAREST) {
258 /*
259 * There is no need to worry about double rounding in directed
260 * rounding modes.
261 */
262 fesetround(oround);
263 /* work around clang bug 8100 */
264 volatile long double vrlo = r.lo;
265 adj = vrlo + xy.lo;
266 return (ldexpl(r.hi + adj, spread));
267 }
268
269 adj = add_adjusted(r.lo, xy.lo);
270 if (spread + ilogbl(r.hi) > -16383)
271 return (ldexpl(r.hi + adj, spread));
272 else
273 return (add_and_denormalize(r.hi, adj, spread));
274 }
275