1# Copyright 2014 The Android Open Source Project 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14 15import os.path 16import its.caps 17import its.device 18import its.image 19import its.objects 20import its.target 21import numpy 22 23CROP_FULL_ERROR_THRESHOLD = 3 # pixels 24CROP_REGION_ERROR_THRESHOLD = 0.01 # reltol 25DIFF_THRESH = 0.05 # reltol 26NAME = os.path.basename(__file__).split(".")[0] 27 28 29def main(): 30 """Test that raw streams are not croppable.""" 31 32 with its.device.ItsSession() as cam: 33 props = cam.get_camera_properties() 34 its.caps.skip_unless(its.caps.compute_target_exposure(props) and 35 its.caps.raw16(props) and 36 its.caps.per_frame_control(props) and 37 not its.caps.mono_camera(props)) 38 39 # Calculate the active sensor region for a full (non-cropped) image. 40 a = props["android.sensor.info.activeArraySize"] 41 ax, ay = a["left"], a["top"] 42 aw, ah = a["right"] - a["left"], a["bottom"] - a["top"] 43 print "Active sensor region: (%d,%d %dx%d)" % (ax, ay, aw, ah) 44 45 full_region = { 46 "left": 0, 47 "top": 0, 48 "right": aw, 49 "bottom": ah 50 } 51 52 # Calculate a center crop region. 53 zoom = min(3.0, its.objects.get_max_digital_zoom(props)) 54 assert(zoom >= 1) 55 cropw = aw / zoom 56 croph = ah / zoom 57 58 crop_region = { 59 "left": aw / 2 - cropw / 2, 60 "top": ah / 2 - croph / 2, 61 "right": aw / 2 + cropw / 2, 62 "bottom": ah / 2 + croph / 2 63 } 64 65 # Capture without a crop region. 66 # Use a manual request with a linear tonemap so that the YUV and RAW 67 # should look the same (once converted by the its.image module). 68 e, s = its.target.get_target_exposure_combos(cam)["minSensitivity"] 69 req = its.objects.manual_capture_request(s,e, 0.0, True, props) 70 cap1_raw, cap1_yuv = cam.do_capture(req, cam.CAP_RAW_YUV) 71 72 # Capture with a crop region. 73 req["android.scaler.cropRegion"] = crop_region 74 cap2_raw, cap2_yuv = cam.do_capture(req, cam.CAP_RAW_YUV) 75 76 # Check the metadata related to crop regions. 77 # When both YUV and RAW are requested, the crop region that's 78 # applied to YUV should be reported. 79 # Note that the crop region returned by the cropped captures doesn't 80 # need to perfectly match the one that was requested. 81 imgs = {} 82 for s, cap, cr_expected, err_delta in [ 83 ("yuv_full", cap1_yuv, full_region, CROP_FULL_ERROR_THRESHOLD), 84 ("raw_full", cap1_raw, full_region, CROP_FULL_ERROR_THRESHOLD), 85 ("yuv_crop", cap2_yuv, crop_region, CROP_REGION_ERROR_THRESHOLD), 86 ("raw_crop", cap2_raw, crop_region, CROP_REGION_ERROR_THRESHOLD)]: 87 88 # Convert the capture to RGB and dump to a file. 89 img = its.image.convert_capture_to_rgb_image(cap, props=props) 90 its.image.write_image(img, "%s_%s.jpg" % (NAME, s)) 91 imgs[s] = img 92 93 # Get the crop region that is reported in the capture result. 94 cr_reported = cap["metadata"]["android.scaler.cropRegion"] 95 x, y = cr_reported["left"], cr_reported["top"] 96 w = cr_reported["right"] - cr_reported["left"] 97 h = cr_reported["bottom"] - cr_reported["top"] 98 print "Crop reported on %s: (%d,%d %dx%d)" % (s, x, y, w, h) 99 100 # Test that the reported crop region is the same as the expected 101 # one, for a non-cropped capture, and is close to the expected one, 102 # for a cropped capture. 103 ex = aw * err_delta 104 ey = ah * err_delta 105 assert ((abs(cr_expected["left"] - cr_reported["left"]) <= ex) and 106 (abs(cr_expected["right"] - cr_reported["right"]) <= ex) and 107 (abs(cr_expected["top"] - cr_reported["top"]) <= ey) and 108 (abs(cr_expected["bottom"] - cr_reported["bottom"]) <= ey)) 109 110 # Also check the image content; 3 of the 4 shots should match. 111 # Note that all the shots are RGB below; the variable names correspond 112 # to what was captured. 113 114 # Shrink the YUV images 2x2 -> 1 to account for the size reduction that 115 # the raw images went through in the RGB conversion. 116 imgs2 = {} 117 for s,img in imgs.iteritems(): 118 h,w,ch = img.shape 119 if s in ["yuv_full", "yuv_crop"]: 120 img = img.reshape(h/2,2,w/2,2,3).mean(3).mean(1) 121 img = img.reshape(h/2,w/2,3) 122 imgs2[s] = img 123 124 # Strip any border pixels from the raw shots (since the raw images may 125 # be larger than the YUV images). Assume a symmetric padded border. 126 xpad = (imgs2["raw_full"].shape[1] - imgs2["yuv_full"].shape[1]) / 2 127 ypad = (imgs2["raw_full"].shape[0] - imgs2["yuv_full"].shape[0]) / 2 128 wyuv = imgs2["yuv_full"].shape[1] 129 hyuv = imgs2["yuv_full"].shape[0] 130 imgs2["raw_full"]=imgs2["raw_full"][ypad:ypad+hyuv:,xpad:xpad+wyuv:,::] 131 imgs2["raw_crop"]=imgs2["raw_crop"][ypad:ypad+hyuv:,xpad:xpad+wyuv:,::] 132 print "Stripping padding before comparison:", xpad, ypad 133 134 for s,img in imgs2.iteritems(): 135 its.image.write_image(img, "%s_comp_%s.jpg" % (NAME, s)) 136 137 # Compute diffs between images of the same type. 138 # The raw_crop and raw_full shots should be identical (since the crop 139 # doesn't apply to raw images), and the yuv_crop and yuv_full shots 140 # should be different. 141 diff_yuv = numpy.fabs((imgs2["yuv_full"] - imgs2["yuv_crop"])).mean() 142 diff_raw = numpy.fabs((imgs2["raw_full"] - imgs2["raw_crop"])).mean() 143 print "YUV diff (crop vs. non-crop):", diff_yuv 144 print "RAW diff (crop vs. non-crop):", diff_raw 145 146 assert(diff_yuv > DIFF_THRESH) 147 assert(diff_raw < DIFF_THRESH) 148 149if __name__ == '__main__': 150 main() 151 152