1# Copyright 2013 The Android Open Source Project
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#      http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14
15import os.path
16
17import its.caps
18import its.device
19import its.image
20import its.objects
21import its.target
22import matplotlib
23from matplotlib import pylab
24import numpy
25
26IMG_STATS_GRID = 9  # find used to find the center 11.11%
27NAME = os.path.basename(__file__).split('.')[0]
28THRESHOLD_MAX_OUTLIER_DIFF = 0.1
29THRESHOLD_MIN_LEVEL = 0.1
30THRESHOLD_MAX_LEVEL = 0.9
31THRESHOLD_MAX_LEVEL_DIFF = 0.045
32THRESHOLD_MAX_LEVEL_DIFF_WIDE_RANGE = 0.06
33THRESH_ROUND_DOWN_GAIN = 0.1
34THRESH_ROUND_DOWN_EXP = 0.03
35THRESH_ROUND_DOWN_EXP0 = 1.00  # tol at 0ms exp; theoretical limit @ 4-line exp
36THRESH_EXP_KNEE = 6E6  # exposures less than knee have relaxed tol
37
38
39def get_raw_active_array_size(props):
40    """Return the active array w, h from props."""
41    aaw = (props['android.sensor.info.preCorrectionActiveArraySize']['right'] -
42           props['android.sensor.info.preCorrectionActiveArraySize']['left'])
43    aah = (props['android.sensor.info.preCorrectionActiveArraySize']['bottom'] -
44           props['android.sensor.info.preCorrectionActiveArraySize']['top'])
45    return aaw, aah
46
47
48def main():
49    """Test that a constant exposure is seen as ISO and exposure time vary.
50
51    Take a series of shots that have ISO and exposure time chosen to balance
52    each other; result should be the same brightness, but over the sequence
53    the images should get noisier.
54    """
55    mults = []
56    r_means = []
57    g_means = []
58    b_means = []
59    raw_r_means = []
60    raw_gr_means = []
61    raw_gb_means = []
62    raw_b_means = []
63    threshold_max_level_diff = THRESHOLD_MAX_LEVEL_DIFF
64
65    with its.device.ItsSession() as cam:
66        props = cam.get_camera_properties()
67        props = cam.override_with_hidden_physical_camera_props(props)
68        its.caps.skip_unless(its.caps.compute_target_exposure(props))
69        sync_latency = its.caps.sync_latency(props)
70        process_raw = its.caps.raw16(props) and its.caps.manual_sensor(props)
71        debug = its.caps.debug_mode()
72        largest_yuv = its.objects.get_largest_yuv_format(props)
73        if debug:
74            fmt = largest_yuv
75        else:
76            match_ar = (largest_yuv['width'], largest_yuv['height'])
77            fmt = its.objects.get_smallest_yuv_format(props, match_ar=match_ar)
78
79        e, s = its.target.get_target_exposure_combos(cam)['minSensitivity']
80        s_e_product = s*e
81        expt_range = props['android.sensor.info.exposureTimeRange']
82        sens_range = props['android.sensor.info.sensitivityRange']
83
84        m = 1.0
85        while s*m < sens_range[1] and e/m > expt_range[0]:
86            mults.append(m)
87            s_test = round(s*m)
88            e_test = s_e_product / s_test
89            print 'Testing s:', s_test, 'e:', e_test
90            req = its.objects.manual_capture_request(
91                    s_test, e_test, 0.0, True, props)
92            cap = its.device.do_capture_with_latency(
93                    cam, req, sync_latency, fmt)
94            s_res = cap['metadata']['android.sensor.sensitivity']
95            e_res = cap['metadata']['android.sensor.exposureTime']
96            # determine exposure tolerance based on exposure time
97            if e_test >= THRESH_EXP_KNEE:
98                thresh_round_down_exp = THRESH_ROUND_DOWN_EXP
99            else:
100                thresh_round_down_exp = (
101                        THRESH_ROUND_DOWN_EXP +
102                        (THRESH_ROUND_DOWN_EXP0 - THRESH_ROUND_DOWN_EXP) *
103                        (THRESH_EXP_KNEE - e_test) / THRESH_EXP_KNEE)
104            s_msg = 's_write: %d, s_read: %d, TOL=%.f%%' % (
105                    s_test, s_res, THRESH_ROUND_DOWN_GAIN*100)
106            e_msg = 'e_write: %.3fms, e_read: %.3fms, TOL=%.f%%' % (
107                    e_test/1.0E6, e_res/1.0E6, thresh_round_down_exp*100)
108            assert 0 <= s_test - s_res < s_test * THRESH_ROUND_DOWN_GAIN, s_msg
109            assert 0 <= e_test - e_res < e_test * thresh_round_down_exp, e_msg
110            s_e_product_res = s_res * e_res
111            request_result_ratio = float(s_e_product) / s_e_product_res
112            print 'Capture result s:', s_res, 'e:', e_res
113            img = its.image.convert_capture_to_rgb_image(cap)
114            its.image.write_image(img, '%s_mult=%3.2f.jpg' % (NAME, m))
115            tile = its.image.get_image_patch(img, 0.45, 0.45, 0.1, 0.1)
116            rgb_means = its.image.compute_image_means(tile)
117            # Adjust for the difference between request and result
118            r_means.append(rgb_means[0] * request_result_ratio)
119            g_means.append(rgb_means[1] * request_result_ratio)
120            b_means.append(rgb_means[2] * request_result_ratio)
121            # do same in RAW space if possible
122            if process_raw and debug:
123                aaw, aah = get_raw_active_array_size(props)
124                fmt_raw = {'format': 'rawStats',
125                           'gridWidth': aaw/IMG_STATS_GRID,
126                           'gridHeight': aah/IMG_STATS_GRID}
127                raw_cap = its.device.do_capture_with_latency(
128                        cam, req, sync_latency, fmt_raw)
129                r, gr, gb, b = its.image.convert_capture_to_planes(
130                        raw_cap, props)
131                raw_r_means.append(r[IMG_STATS_GRID/2, IMG_STATS_GRID/2]
132                                   * request_result_ratio)
133                raw_gr_means.append(gr[IMG_STATS_GRID/2, IMG_STATS_GRID/2]
134                                    * request_result_ratio)
135                raw_gb_means.append(gb[IMG_STATS_GRID/2, IMG_STATS_GRID/2]
136                                    * request_result_ratio)
137                raw_b_means.append(b[IMG_STATS_GRID/2, IMG_STATS_GRID/2]
138                                   * request_result_ratio)
139            # Test 3 steps per 2x gain
140            m *= pow(2, 1.0 / 3)
141
142        # Allow more threshold for devices with wider exposure range
143        if m >= 64.0:
144            threshold_max_level_diff = THRESHOLD_MAX_LEVEL_DIFF_WIDE_RANGE
145
146    # Draw plots
147    pylab.figure('rgb data')
148    pylab.plot(mults, r_means, 'ro-')
149    pylab.plot(mults, g_means, 'go-')
150    pylab.plot(mults, b_means, 'bo-')
151    pylab.title(NAME + 'RGB Data')
152    pylab.xlabel('Gain Multiplier')
153    pylab.ylabel('Normalized RGB Plane Avg')
154    pylab.ylim([0, 1])
155    matplotlib.pyplot.savefig('%s_plot_means.png' % (NAME))
156
157    if process_raw and debug:
158        pylab.figure('raw data')
159        pylab.plot(mults, raw_r_means, 'ro-', label='R')
160        pylab.plot(mults, raw_gr_means, 'go-', label='GR')
161        pylab.plot(mults, raw_gb_means, 'ko-', label='GB')
162        pylab.plot(mults, raw_b_means, 'bo-', label='B')
163        pylab.title(NAME + 'RAW Data')
164        pylab.xlabel('Gain Multiplier')
165        pylab.ylabel('Normalized RAW Plane Avg')
166        pylab.ylim([0, 1])
167        pylab.legend(numpoints=1)
168        matplotlib.pyplot.savefig('%s_plot_raw_means.png' % (NAME))
169
170    # Check for linearity. Verify sample pixel mean values are close to each
171    # other. Also ensure that the images aren't clamped to 0 or 1
172    # (which would make them look like flat lines).
173    for chan in xrange(3):
174        values = [r_means, g_means, b_means][chan]
175        m, b = numpy.polyfit(mults, values, 1).tolist()
176        max_val = max(values)
177        min_val = min(values)
178        max_diff = max_val - min_val
179        print 'Channel %d line fit (y = mx+b): m = %f, b = %f' % (chan, m, b)
180        print 'Channel max %f min %f diff %f' % (max_val, min_val, max_diff)
181        assert max_diff < threshold_max_level_diff
182        assert b > THRESHOLD_MIN_LEVEL and b < THRESHOLD_MAX_LEVEL
183        for v in values:
184            assert v > THRESHOLD_MIN_LEVEL and v < THRESHOLD_MAX_LEVEL
185            assert abs(v - b) < THRESHOLD_MAX_OUTLIER_DIFF
186    if process_raw and debug:
187        for chan in xrange(4):
188            values = [raw_r_means, raw_gr_means, raw_gb_means,
189                      raw_b_means][chan]
190            m, b = numpy.polyfit(mults, values, 1).tolist()
191            max_val = max(values)
192            min_val = min(values)
193            max_diff = max_val - min_val
194            print 'Channel %d line fit (y = mx+b): m = %f, b = %f' % (chan,
195                                                                      m, b)
196            print 'Channel max %f min %f diff %f' % (max_val, min_val, max_diff)
197            assert max_diff < threshold_max_level_diff
198            assert b > THRESHOLD_MIN_LEVEL and b < THRESHOLD_MAX_LEVEL
199            for v in values:
200                assert v > THRESHOLD_MIN_LEVEL and v < THRESHOLD_MAX_LEVEL
201                assert abs(v - b) < THRESHOLD_MAX_OUTLIER_DIFF
202
203if __name__ == '__main__':
204    main()
205