1# Copyright 2015 The Android Open Source Project 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14 15import os.path 16 17import its.caps 18import its.device 19import its.image 20import its.objects 21import its.target 22 23import matplotlib 24from matplotlib import pylab 25import numpy 26 27NAME = os.path.basename(__file__).split(".")[0] 28NR_MODES = [0, 1, 2, 3, 4] 29NUM_FRAMES = 4 30SNR_TOLERANCE = 3 # unit in dB 31 32 33def main(): 34 """Test android.noiseReduction.mode is applied for reprocessing requests. 35 36 Capture reprocessed images with the camera dimly lit. Uses a high analog 37 gain to ensure the captured image is noisy. 38 39 Captures three reprocessed images, for NR off, "fast", and "high quality". 40 Also captures a reprocessed image with low gain and NR off, and uses the 41 variance of this as the baseline. 42 """ 43 44 with its.device.ItsSession() as cam: 45 props = cam.get_camera_properties() 46 47 its.caps.skip_unless(its.caps.compute_target_exposure(props) and 48 its.caps.per_frame_control(props) and 49 its.caps.noise_reduction_mode(props, 0) and 50 (its.caps.yuv_reprocess(props) or 51 its.caps.private_reprocess(props))) 52 53 # If reprocessing is supported, ZSL NR mode must be avaiable. 54 assert its.caps.noise_reduction_mode(props, 4) 55 56 reprocess_formats = [] 57 if its.caps.yuv_reprocess(props): 58 reprocess_formats.append("yuv") 59 if its.caps.private_reprocess(props): 60 reprocess_formats.append("private") 61 62 for reprocess_format in reprocess_formats: 63 print "\nreprocess format:", reprocess_format 64 # List of variances for R, G, B. 65 snrs = [[], [], []] 66 nr_modes_reported = [] 67 68 # NR mode 0 with low gain 69 e, s = its.target.get_target_exposure_combos(cam)["minSensitivity"] 70 req = its.objects.manual_capture_request(s, e) 71 req["android.noiseReduction.mode"] = 0 72 73 # Test reprocess_format->JPEG reprocessing 74 # TODO: Switch to reprocess_format->YUV when YUV reprocessing is 75 # supported. 76 size = its.objects.get_available_output_sizes("jpg", props)[0] 77 out_surface = {"width": size[0], "height": size[1], "format": "jpg"} 78 cap = cam.do_capture(req, out_surface, reprocess_format) 79 img = its.image.decompress_jpeg_to_rgb_image(cap["data"]) 80 its.image.write_image(img, "%s_low_gain_fmt=jpg.jpg" % NAME) 81 tile = its.image.get_image_patch(img, 0.45, 0.45, 0.1, 0.1) 82 ref_snr = its.image.compute_image_snrs(tile) 83 print "Ref SNRs:", ref_snr 84 85 e, s = its.target.get_target_exposure_combos(cam)["maxSensitivity"] 86 for nr_mode in NR_MODES: 87 # Skip unavailable modes 88 if not its.caps.noise_reduction_mode(props, nr_mode): 89 nr_modes_reported.append(nr_mode) 90 for channel in range(3): 91 snrs[channel].append(0) 92 continue 93 94 rgb_snr_list = [] 95 # Capture several images to account for per frame noise 96 # variations 97 req = its.objects.manual_capture_request(s, e) 98 req["android.noiseReduction.mode"] = nr_mode 99 caps = cam.do_capture( 100 [req]*NUM_FRAMES, out_surface, reprocess_format) 101 for n in range(NUM_FRAMES): 102 img = its.image.decompress_jpeg_to_rgb_image( 103 caps[n]["data"]) 104 if n == 0: 105 its.image.write_image( 106 img, "%s_high_gain_nr=%d_fmt=jpg.jpg" % ( 107 NAME, nr_mode)) 108 nr_modes_reported.append( 109 caps[n]["metadata"]["android.noiseReduction.mode"]) 110 111 tile = its.image.get_image_patch(img, 0.45, 0.45, 0.1, 0.1) 112 # Get the variances for R, G, and B channels 113 rgb_snrs = its.image.compute_image_snrs(tile) 114 rgb_snr_list.append(rgb_snrs) 115 116 r_snrs = [rgb[0] for rgb in rgb_snr_list] 117 g_snrs = [rgb[1] for rgb in rgb_snr_list] 118 b_snrs = [rgb[2] for rgb in rgb_snr_list] 119 rgb_snrs = [numpy.mean(r_snrs), 120 numpy.mean(g_snrs), 121 numpy.mean(b_snrs)] 122 print "NR mode", nr_mode, "SNRs:" 123 print " R SNR:", rgb_snrs[0], 124 print "Min:", min(r_snrs), "Max:", max(r_snrs) 125 print " G SNR:", rgb_snrs[1], 126 print "Min:", min(g_snrs), "Max:", max(g_snrs) 127 print " B SNR:", rgb_snrs[2], 128 print "Min:", min(b_snrs), "Max:", max(b_snrs) 129 130 for chan in range(3): 131 snrs[chan].append(rgb_snrs[chan]) 132 133 # Draw a plot. 134 pylab.figure(reprocess_format) 135 for channel in range(3): 136 pylab.plot(NR_MODES, snrs[channel], "-"+"rgb"[channel]+"o") 137 138 pylab.title(NAME + ", reprocess_fmt=" + reprocess_format) 139 pylab.xlabel("Noise Reduction Mode") 140 pylab.ylabel("SNR (dB)") 141 pylab.xticks(NR_MODES) 142 matplotlib.pyplot.savefig("%s_plot_%s_SNRs.png" % 143 (NAME, reprocess_format)) 144 145 assert nr_modes_reported == NR_MODES 146 147 for j in range(3): 148 # Verify OFF(0) is not better than FAST(1) 149 msg = "FAST(1): %.2f, OFF(0): %.2f, TOL: %f" % ( 150 snrs[j][1], snrs[j][0], SNR_TOLERANCE) 151 assert snrs[j][0] < snrs[j][1] + SNR_TOLERANCE, msg 152 # Verify FAST(1) is not better than HQ(2) 153 msg = "HQ(2): %.2f, FAST(1): %.2f, TOL: %f" % ( 154 snrs[j][2], snrs[j][1], SNR_TOLERANCE) 155 assert snrs[j][1] < snrs[j][2] + SNR_TOLERANCE, msg 156 # Verify HQ(2) is better than OFF(0) 157 msg = "HQ(2): %.2f, OFF(0): %.2f" % (snrs[j][2], snrs[j][0]) 158 assert snrs[j][0] < snrs[j][2], msg 159 if its.caps.noise_reduction_mode(props, 3): 160 # Verify OFF(0) is not better than MINIMAL(3) 161 msg = "MINIMAL(3): %.2f, OFF(0): %.2f, TOL: %f" % ( 162 snrs[j][3], snrs[j][0], SNR_TOLERANCE) 163 assert snrs[j][0] < snrs[j][3] + SNR_TOLERANCE, msg 164 # Verify MINIMAL(3) is not better than HQ(2) 165 msg = "MINIMAL(3): %.2f, HQ(2): %.2f, TOL: %f" % ( 166 snrs[j][3], snrs[j][2], SNR_TOLERANCE) 167 assert snrs[j][3] < snrs[j][2] + SNR_TOLERANCE, msg 168 # Verify ZSL(4) is close to MINIMAL(3) 169 msg = "ZSL(4): %.2f, MINIMAL(3): %.2f, TOL: %f" % ( 170 snrs[j][4], snrs[j][3], SNR_TOLERANCE) 171 assert numpy.isclose(snrs[j][4], snrs[j][3], 172 atol=SNR_TOLERANCE), msg 173 else: 174 # Verify ZSL(4) is close to OFF(0) 175 msg = "ZSL(4): %.2f, OFF(0): %.2f, TOL: %f" % ( 176 snrs[j][4], snrs[j][0], SNR_TOLERANCE) 177 assert numpy.isclose(snrs[j][4], snrs[j][0], 178 atol=SNR_TOLERANCE), msg 179 180if __name__ == "__main__": 181 main() 182 183