1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 //#define LOG_NDEBUG 0
18 #define LOG_TAG "EmulatedCamera_Scene"
19 #include <log/log.h>
20 #include <stdlib.h>
21 #include <cmath>
22 #include "Scene.h"
23 
24 // TODO: This should probably be done host-side in OpenGL for speed and better
25 // quality
26 
27 namespace android {
28 
29 // Define single-letter shortcuts for scene definition, for directly indexing
30 // mCurrentColors
31 #define G (Scene::GRASS * Scene::NUM_CHANNELS)
32 #define S (Scene::GRASS_SHADOW * Scene::NUM_CHANNELS)
33 #define H (Scene::HILL * Scene::NUM_CHANNELS)
34 #define W (Scene::WALL * Scene::NUM_CHANNELS)
35 #define R (Scene::ROOF * Scene::NUM_CHANNELS)
36 #define D (Scene::DOOR * Scene::NUM_CHANNELS)
37 #define C (Scene::CHIMNEY * Scene::NUM_CHANNELS)
38 #define I (Scene::WINDOW * Scene::NUM_CHANNELS)
39 #define U (Scene::SUN * Scene::NUM_CHANNELS)
40 #define K (Scene::SKY * Scene::NUM_CHANNELS)
41 #define M (Scene::MOON * Scene::NUM_CHANNELS)
42 
43 const int Scene::kSceneWidth = 20;
44 const int Scene::kSceneHeight = 20;
45 const int Scene::kMaxWidth = 20;
46 const int Scene::kMaxHeight = 20;
47 
48 const uint8_t Scene::kScene[Scene::kSceneWidth * Scene::kSceneHeight] = {
49     //      5         10        15        20
50     K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,
51     K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,
52     K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,
53     K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,
54     K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K, // 5
55     K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,
56     K,K,K,K,K,K,K,K,H,H,H,H,H,H,H,H,H,H,H,H,
57     K,K,K,K,K,K,K,K,H,H,H,H,H,H,H,C,C,H,H,H,
58     K,K,K,K,K,K,H,H,H,H,H,H,H,H,H,C,C,H,H,H,
59     H,K,K,K,K,K,H,R,R,R,R,R,R,R,R,R,R,R,R,H, // 10
60     H,K,K,K,K,H,H,R,R,R,R,R,R,R,R,R,R,R,R,H,
61     H,H,H,K,K,H,H,R,R,R,R,R,R,R,R,R,R,R,R,H,
62     H,H,H,K,K,H,H,H,W,W,W,W,W,W,W,W,W,W,H,H,
63     S,S,S,G,G,S,S,S,W,W,W,W,W,W,W,W,W,W,S,S,
64     S,G,G,G,G,S,S,S,W,I,I,W,D,D,W,I,I,W,S,S, // 15
65     G,G,G,G,G,G,S,S,W,I,I,W,D,D,W,I,I,W,S,S,
66     G,G,G,G,G,G,G,G,W,W,W,W,D,D,W,W,W,W,G,G,
67     G,G,G,G,G,G,G,G,W,W,W,W,D,D,W,W,W,W,G,G,
68     G,G,G,G,G,G,G,G,S,S,S,S,S,S,S,S,S,S,G,G,
69     G,G,G,G,G,G,G,G,S,S,S,S,S,S,S,S,S,S,G,G, // 20
70     //      5         10        15        20
71 };
72 
73 #undef G
74 #undef S
75 #undef H
76 #undef W
77 #undef R
78 #undef D
79 #undef C
80 #undef I
81 #undef U
82 #undef K
83 #undef M
84 
Scene(int sensorWidthPx,int sensorHeightPx,float sensorSensitivity)85 Scene::Scene(
86     int sensorWidthPx,
87     int sensorHeightPx,
88     float sensorSensitivity):
89         mSensorWidth(sensorWidthPx),
90         mSensorHeight(sensorHeightPx),
91         mHour(12),
92         mExposureDuration(0.033f)
93         //mSensorSensitivity(sensorSensitivity)
94 {
95     // Map scene to sensor pixels
96     if (mSensorWidth > mSensorHeight) {
97         mMapDiv = (mSensorWidth / (kSceneWidth + 1) ) + 1;
98     } else {
99         mMapDiv = (mSensorHeight / (kSceneHeight + 1) ) + 1;
100     }
101     mOffsetX = (kSceneWidth * mMapDiv - mSensorWidth) / 2;
102     mOffsetY = (kSceneHeight * mMapDiv - mSensorHeight) / 2;
103 
104     // Assume that sensor filters are sRGB primaries to start
105     mFilterR[0]  =  3.2406f; mFilterR[1]  = -1.5372f; mFilterR[2]  = -0.4986f;
106     mFilterGr[0] = -0.9689f; mFilterGr[1] =  1.8758f; mFilterGr[2] =  0.0415f;
107     mFilterGb[0] = -0.9689f; mFilterGb[1] =  1.8758f; mFilterGb[2] =  0.0415f;
108     mFilterB[0]  =  0.0557f; mFilterB[1]  = -0.2040f; mFilterB[2]  =  1.0570f;
109 
110 
111 }
112 
~Scene()113 Scene::~Scene() {
114 }
115 
setColorFilterXYZ(float rX,float rY,float rZ,float grX,float grY,float grZ,float gbX,float gbY,float gbZ,float bX,float bY,float bZ)116 void Scene::setColorFilterXYZ(
117         float rX, float rY, float rZ,
118         float grX, float grY, float grZ,
119         float gbX, float gbY, float gbZ,
120         float bX, float bY, float bZ) {
121     mFilterR[0]  = rX;  mFilterR[1]  = rY;  mFilterR[2]  = rZ;
122     mFilterGr[0] = grX; mFilterGr[1] = grY; mFilterGr[2] = grZ;
123     mFilterGb[0] = gbX; mFilterGb[1] = gbY; mFilterGb[2] = gbZ;
124     mFilterB[0]  = bX;  mFilterB[1]  = bY;  mFilterB[2]  = bZ;
125 }
126 
setHour(int hour)127 void Scene::setHour(int hour) {
128     ALOGV("Hour set to: %d", hour);
129     mHour = hour % 24;
130 }
131 
getHour()132 int Scene::getHour() {
133     return mHour;
134 }
135 
setExposureDuration(float seconds)136 void Scene::setExposureDuration(float seconds) {
137     mExposureDuration = seconds;
138 }
139 
calculateScene(nsecs_t time)140 void Scene::calculateScene(nsecs_t time) {
141     // Calculate time fractions for interpolation
142     int timeIdx = mHour / kTimeStep;
143     int nextTimeIdx = (timeIdx + 1) % (24 / kTimeStep);
144     const nsecs_t kOneHourInNsec = 1e9 * 60 * 60;
145     nsecs_t timeSinceIdx = (mHour - timeIdx * kTimeStep) * kOneHourInNsec + time;
146     float timeFrac = timeSinceIdx / (float)(kOneHourInNsec * kTimeStep);
147 
148     // Determine overall sunlight levels
149     float sunLux =
150             kSunlight[timeIdx] * (1 - timeFrac) +
151             kSunlight[nextTimeIdx] * timeFrac;
152     ALOGV("Sun lux: %f", sunLux);
153 
154     float sunShadeLux = sunLux * (kDaylightShadeIllum / kDirectSunIllum);
155 
156     // Determine sun/shade illumination chromaticity
157     float currentSunXY[2];
158     float currentShadeXY[2];
159 
160     const float *prevSunXY, *nextSunXY;
161     const float *prevShadeXY, *nextShadeXY;
162     if (kSunlight[timeIdx] == kSunsetIllum ||
163             kSunlight[timeIdx] == kTwilightIllum) {
164         prevSunXY = kSunsetXY;
165         prevShadeXY = kSunsetXY;
166     } else {
167         prevSunXY = kDirectSunlightXY;
168         prevShadeXY = kDaylightXY;
169     }
170     if (kSunlight[nextTimeIdx] == kSunsetIllum ||
171             kSunlight[nextTimeIdx] == kTwilightIllum) {
172         nextSunXY = kSunsetXY;
173         nextShadeXY = kSunsetXY;
174     } else {
175         nextSunXY = kDirectSunlightXY;
176         nextShadeXY = kDaylightXY;
177     }
178     currentSunXY[0] = prevSunXY[0] * (1 - timeFrac) +
179             nextSunXY[0] * timeFrac;
180     currentSunXY[1] = prevSunXY[1] * (1 - timeFrac) +
181             nextSunXY[1] * timeFrac;
182 
183     currentShadeXY[0] = prevShadeXY[0] * (1 - timeFrac) +
184             nextShadeXY[0] * timeFrac;
185     currentShadeXY[1] = prevShadeXY[1] * (1 - timeFrac) +
186             nextShadeXY[1] * timeFrac;
187 
188     ALOGV("Sun XY: %f, %f, Shade XY: %f, %f",
189             currentSunXY[0], currentSunXY[1],
190             currentShadeXY[0], currentShadeXY[1]);
191 
192     // Converting for xyY to XYZ:
193     // X = Y / y * x
194     // Y = Y
195     // Z = Y / y * (1 - x - y);
196     float sunXYZ[3] = {
197         sunLux / currentSunXY[1] * currentSunXY[0],
198         sunLux,
199         sunLux / currentSunXY[1] *
200         (1 - currentSunXY[0] - currentSunXY[1])
201     };
202     float sunShadeXYZ[3] = {
203         sunShadeLux / currentShadeXY[1] * currentShadeXY[0],
204         sunShadeLux,
205         sunShadeLux / currentShadeXY[1] *
206         (1 - currentShadeXY[0] - currentShadeXY[1])
207     };
208     ALOGV("Sun XYZ: %f, %f, %f",
209             sunXYZ[0], sunXYZ[1], sunXYZ[2]);
210     ALOGV("Sun shade XYZ: %f, %f, %f",
211             sunShadeXYZ[0], sunShadeXYZ[1], sunShadeXYZ[2]);
212 
213     // Determine moonlight levels
214     float moonLux =
215             kMoonlight[timeIdx] * (1 - timeFrac) +
216             kMoonlight[nextTimeIdx] * timeFrac;
217     float moonShadeLux = moonLux * (kDaylightShadeIllum / kDirectSunIllum);
218 
219     float moonXYZ[3] = {
220         moonLux / kMoonlightXY[1] * kMoonlightXY[0],
221         moonLux,
222         moonLux / kMoonlightXY[1] *
223         (1 - kMoonlightXY[0] - kMoonlightXY[1])
224     };
225     float moonShadeXYZ[3] = {
226         moonShadeLux / kMoonlightXY[1] * kMoonlightXY[0],
227         moonShadeLux,
228         moonShadeLux / kMoonlightXY[1] *
229         (1 - kMoonlightXY[0] - kMoonlightXY[1])
230     };
231 
232     // Determine starlight level
233     const float kClearNightXYZ[3] = {
234         kClearNightIllum / kMoonlightXY[1] * kMoonlightXY[0],
235         kClearNightIllum,
236         kClearNightIllum / kMoonlightXY[1] *
237             (1 - kMoonlightXY[0] - kMoonlightXY[1])
238     };
239 
240     // Calculate direct and shaded light
241     float directIllumXYZ[3] = {
242         sunXYZ[0] + moonXYZ[0] + kClearNightXYZ[0],
243         sunXYZ[1] + moonXYZ[1] + kClearNightXYZ[1],
244         sunXYZ[2] + moonXYZ[2] + kClearNightXYZ[2],
245     };
246 
247     float shadeIllumXYZ[3] = {
248         kClearNightXYZ[0],
249         kClearNightXYZ[1],
250         kClearNightXYZ[2]
251     };
252 
253     shadeIllumXYZ[0] += (mHour < kSunOverhead) ? sunXYZ[0] : sunShadeXYZ[0];
254     shadeIllumXYZ[1] += (mHour < kSunOverhead) ? sunXYZ[1] : sunShadeXYZ[1];
255     shadeIllumXYZ[2] += (mHour < kSunOverhead) ? sunXYZ[2] : sunShadeXYZ[2];
256 
257     // Moon up period covers 23->0 transition, shift for simplicity
258     int adjHour = (mHour + 12) % 24;
259     int adjMoonOverhead = (kMoonOverhead + 12 ) % 24;
260     shadeIllumXYZ[0] += (adjHour < adjMoonOverhead) ?
261             moonXYZ[0] : moonShadeXYZ[0];
262     shadeIllumXYZ[1] += (adjHour < adjMoonOverhead) ?
263             moonXYZ[1] : moonShadeXYZ[1];
264     shadeIllumXYZ[2] += (adjHour < adjMoonOverhead) ?
265             moonXYZ[2] : moonShadeXYZ[2];
266 
267     ALOGV("Direct XYZ: %f, %f, %f",
268             directIllumXYZ[0],directIllumXYZ[1],directIllumXYZ[2]);
269     ALOGV("Shade XYZ: %f, %f, %f",
270             shadeIllumXYZ[0], shadeIllumXYZ[1], shadeIllumXYZ[2]);
271 
272     for (int i = 0; i < NUM_MATERIALS; i++) {
273         // Converting for xyY to XYZ:
274         // X = Y / y * x
275         // Y = Y
276         // Z = Y / y * (1 - x - y);
277         float matXYZ[3] = {
278             kMaterials_xyY[i][2] / kMaterials_xyY[i][1] *
279               kMaterials_xyY[i][0],
280             kMaterials_xyY[i][2],
281             kMaterials_xyY[i][2] / kMaterials_xyY[i][1] *
282               (1 - kMaterials_xyY[i][0] - kMaterials_xyY[i][1])
283         };
284 
285         if (kMaterialsFlags[i] == 0 || kMaterialsFlags[i] & kSky) {
286             matXYZ[0] *= directIllumXYZ[0];
287             matXYZ[1] *= directIllumXYZ[1];
288             matXYZ[2] *= directIllumXYZ[2];
289         } else if (kMaterialsFlags[i] & kShadowed) {
290             matXYZ[0] *= shadeIllumXYZ[0];
291             matXYZ[1] *= shadeIllumXYZ[1];
292             matXYZ[2] *= shadeIllumXYZ[2];
293         } // else if (kMaterialsFlags[i] * kSelfLit), do nothing
294 
295         ALOGV("Mat %d XYZ: %f, %f, %f", i, matXYZ[0], matXYZ[1], matXYZ[2]);
296         //float luxToElectrons = mSensorSensitivity * mExposureDuration /
297         //        (kAperture * kAperture);
298         // Hack, fixed value to avoid over exposure and produce more
299         // colors to pass CTS jpeg size check
300         float luxToElectrons = 0.490581;
301         mCurrentColors[i*NUM_CHANNELS + 0] =
302                 (mFilterR[0] * matXYZ[0] +
303                  mFilterR[1] * matXYZ[1] +
304                  mFilterR[2] * matXYZ[2])
305                 * luxToElectrons;
306         mCurrentColors[i*NUM_CHANNELS + 1] =
307                 (mFilterGr[0] * matXYZ[0] +
308                  mFilterGr[1] * matXYZ[1] +
309                  mFilterGr[2] * matXYZ[2])
310                 * luxToElectrons;
311         mCurrentColors[i*NUM_CHANNELS + 2] =
312                 (mFilterGb[0] * matXYZ[0] +
313                  mFilterGb[1] * matXYZ[1] +
314                  mFilterGb[2] * matXYZ[2])
315                 * luxToElectrons;
316         mCurrentColors[i*NUM_CHANNELS + 3] =
317                 (mFilterB[0] * matXYZ[0] +
318                  mFilterB[1] * matXYZ[1] +
319                  mFilterB[2] * matXYZ[2])
320                 * luxToElectrons;
321 
322         ALOGV("Color %d RGGB: %d, %d, %d, %d", i,
323                 mCurrentColors[i*NUM_CHANNELS + 0],
324                 mCurrentColors[i*NUM_CHANNELS + 1],
325                 mCurrentColors[i*NUM_CHANNELS + 2],
326                 mCurrentColors[i*NUM_CHANNELS + 3]);
327     }
328     // Shake viewpoint; horizontal and vertical sinusoids at roughly
329     // human handshake frequencies
330     mHandshakeX =
331             ( kFreq1Magnitude * std::sin(kHorizShakeFreq1 * timeSinceIdx) +
332               kFreq2Magnitude * std::sin(kHorizShakeFreq2 * timeSinceIdx) ) *
333             mMapDiv * kShakeFraction;
334 
335     mHandshakeY =
336             ( kFreq1Magnitude * std::sin(kVertShakeFreq1 * timeSinceIdx) +
337               kFreq2Magnitude * std::sin(kVertShakeFreq2 * timeSinceIdx) ) *
338             mMapDiv * kShakeFraction;
339 
340     // Set starting pixel
341     setReadoutPixel(0,0);
342 }
343 
344 // Handshake model constants.
345 // Frequencies measured in a nanosecond timebase
346 const float Scene::kHorizShakeFreq1 = 2 * M_PI * 1  / 1e9; // 1 Hz
347 const float Scene::kHorizShakeFreq2 = 2 * M_PI * 1 / 1e9; // 1 Hz
348 const float Scene::kVertShakeFreq1  = 2 * M_PI * 1  / 1e9; // 1 Hz
349 const float Scene::kVertShakeFreq2  = 2 * M_PI * 1 / 1e9; // 1 Hz
350 const float Scene::kFreq1Magnitude  = 5;
351 const float Scene::kFreq2Magnitude  = 1;
352 const float Scene::kShakeFraction   = 0.2; // As a fraction of a scene tile
353 
354 // RGB->YUV, Jpeg standard
355 const float Scene::kRgb2Yuv[12] = {
356        0.299f,    0.587f,    0.114f,    0.f,
357     -0.16874f, -0.33126f,      0.5f, -128.f,
358          0.5f, -0.41869f, -0.08131f, -128.f,
359 };
360 
361 // Aperture of imaging lens
362 const float Scene::kAperture = 2.8;
363 
364 // Sun illumination levels through the day
365 const float Scene::kSunlight[24/kTimeStep] =
366 {
367     0, // 00:00
368     0,
369     0,
370     kTwilightIllum, // 06:00
371     kDirectSunIllum,
372     kDirectSunIllum,
373     kDirectSunIllum, // 12:00
374     kDirectSunIllum,
375     kDirectSunIllum,
376     kSunsetIllum, // 18:00
377     kTwilightIllum,
378     0
379 };
380 
381 // Moon illumination levels through the day
382 const float Scene::kMoonlight[24/kTimeStep] =
383 {
384     kFullMoonIllum, // 00:00
385     kFullMoonIllum,
386     0,
387     0, // 06:00
388     0,
389     0,
390     0, // 12:00
391     0,
392     0,
393     0, // 18:00
394     0,
395     kFullMoonIllum
396 };
397 
398 const int Scene::kSunOverhead = 12;
399 const int Scene::kMoonOverhead = 0;
400 
401 // Used for sun illumination levels
402 const float Scene::kDirectSunIllum     = 100000;
403 const float Scene::kSunsetIllum        = 400;
404 const float Scene::kTwilightIllum      = 4;
405 // Used for moon illumination levels
406 const float Scene::kFullMoonIllum      = 1;
407 // Other illumination levels
408 const float Scene::kDaylightShadeIllum = 20000;
409 const float Scene::kClearNightIllum    = 2e-3;
410 const float Scene::kStarIllum          = 2e-6;
411 const float Scene::kLivingRoomIllum    = 50;
412 
413 const float Scene::kIncandescentXY[2]   = { 0.44757f, 0.40745f};
414 const float Scene::kDirectSunlightXY[2] = { 0.34842f, 0.35161f};
415 const float Scene::kDaylightXY[2]       = { 0.31271f, 0.32902f};
416 const float Scene::kNoonSkyXY[2]        = { 0.346f,   0.359f};
417 const float Scene::kMoonlightXY[2]      = { 0.34842f, 0.35161f};
418 const float Scene::kSunsetXY[2]         = { 0.527f,   0.413f};
419 
420 const uint8_t Scene::kSelfLit  = 0x01;
421 const uint8_t Scene::kShadowed = 0x02;
422 const uint8_t Scene::kSky      = 0x04;
423 
424 // For non-self-lit materials, the Y component is normalized with 1=full
425 // reflectance; for self-lit materials, it's the constant illuminance in lux.
426 const float Scene::kMaterials_xyY[Scene::NUM_MATERIALS][3] = {
427     { 0.3688f, 0.4501f, .1329f }, // GRASS
428     { 0.3688f, 0.4501f, .1329f }, // GRASS_SHADOW
429     { 0.3986f, 0.5002f, .4440f }, // HILL
430     { 0.3262f, 0.5040f, .2297f }, // WALL
431     { 0.4336f, 0.3787f, .1029f }, // ROOF
432     { 0.3316f, 0.2544f, .0639f }, // DOOR
433     { 0.3425f, 0.3577f, .0887f }, // CHIMNEY
434     { kIncandescentXY[0], kIncandescentXY[1], kLivingRoomIllum }, // WINDOW
435     { kDirectSunlightXY[0], kDirectSunlightXY[1], kDirectSunIllum }, // SUN
436     { kNoonSkyXY[0], kNoonSkyXY[1], kDaylightShadeIllum / kDirectSunIllum }, // SKY
437     { kMoonlightXY[0], kMoonlightXY[1], kFullMoonIllum } // MOON
438 };
439 
440 const uint8_t Scene::kMaterialsFlags[Scene::NUM_MATERIALS] = {
441     0,
442     kShadowed,
443     kShadowed,
444     kShadowed,
445     kShadowed,
446     kShadowed,
447     kShadowed,
448     kSelfLit,
449     kSelfLit,
450     kSky,
451     kSelfLit,
452 };
453 
454 } // namespace android
455