1 #include "common/math/levenberg_marquardt.h"
2 
3 #include <stdbool.h>
4 #include <stdio.h>
5 #include <string.h>
6 
7 #include "common/math/macros.h"
8 #include "common/math/mat.h"
9 #include "common/math/vec.h"
10 
11 // FORWARD DECLARATIONS
12 ////////////////////////////////////////////////////////////////////////
13 static bool checkRelativeStepSize(const float *step, const float *state,
14                                   size_t dim, float relative_error_threshold);
15 
16 static bool computeResidualAndGradients(ResidualAndJacobianFunction func,
17                                         const float *state, const void *f_data,
18                                         float *jacobian,
19                                         float gradient_threshold,
20                                         size_t state_dim, size_t meas_dim,
21                                         float *residual, float *gradient,
22                                         float *hessian);
23 
24 static bool computeStep(const float *gradient, float *hessian, float *L,
25                         float damping_factor, size_t dim, float *step);
26 
27 const static float kEps = 1e-10f;
28 
29 // FUNCTION IMPLEMENTATIONS
30 ////////////////////////////////////////////////////////////////////////
lmSolverInit(struct LmSolver * solver,const struct LmParams * params,ResidualAndJacobianFunction func)31 void lmSolverInit(struct LmSolver *solver, const struct LmParams *params,
32                   ResidualAndJacobianFunction func) {
33   ASSERT_NOT_NULL(solver);
34   ASSERT_NOT_NULL(params);
35   ASSERT_NOT_NULL(func);
36   memset(solver, 0, sizeof(struct LmSolver));
37   memcpy(&solver->params, params, sizeof(struct LmParams));
38   solver->func = func;
39   solver->num_iter = 0;
40 }
41 
lmSolverDestroy(struct LmSolver * solver)42 void lmSolverDestroy(struct LmSolver *solver) {
43   (void)solver;
44 }
45 
lmSolverSetData(struct LmSolver * solver,struct LmData * data)46 void lmSolverSetData(struct LmSolver *solver, struct LmData *data) {
47   ASSERT_NOT_NULL(solver);
48   ASSERT_NOT_NULL(data);
49   solver->data = data;
50 }
51 
lmSolverSolve(struct LmSolver * solver,const float * initial_state,void * f_data,size_t state_dim,size_t meas_dim,float * state)52 enum LmStatus lmSolverSolve(struct LmSolver *solver, const float *initial_state,
53                             void *f_data, size_t state_dim, size_t meas_dim,
54                             float *state) {
55   // Initialize parameters.
56   float damping_factor = 0.0f;
57   float v = 2.0f;
58 
59   // Check dimensions.
60   if (meas_dim > MAX_LM_MEAS_DIMENSION || state_dim > MAX_LM_STATE_DIMENSION) {
61     return INVALID_DATA_DIMENSIONS;
62   }
63 
64   // Check pointers (note that f_data can be null if no additional data is
65   // required by the error function).
66   ASSERT_NOT_NULL(solver);
67   ASSERT_NOT_NULL(initial_state);
68   ASSERT_NOT_NULL(state);
69   ASSERT_NOT_NULL(solver->data);
70 
71   // Allocate memory for intermediate variables.
72   float state_new[MAX_LM_STATE_DIMENSION];
73   struct LmData *data = solver->data;
74 
75   // state = initial_state, num_iter = 0
76   memcpy(state, initial_state, sizeof(float) * state_dim);
77   solver->num_iter = 0;
78 
79   // Compute initial cost function gradient and return if already sufficiently
80   // small to satisfy solution.
81   if (computeResidualAndGradients(solver->func, state, f_data, data->temp,
82                                   solver->params.gradient_threshold, state_dim,
83                                   meas_dim, data->residual,
84                                   data->gradient,
85                                   data->hessian)) {
86     return GRADIENT_SUFFICIENTLY_SMALL;
87   }
88 
89   // Initialize damping parameter.
90   damping_factor = solver->params.initial_u_scale *
91       matMaxDiagonalElement(data->hessian, state_dim);
92 
93   // Iterate solution.
94   for (solver->num_iter = 0;
95        solver->num_iter < solver->params.max_iterations;
96        ++solver->num_iter) {
97 
98     // Compute new solver step.
99     if (!computeStep(data->gradient, data->hessian, data->temp, damping_factor,
100                      state_dim, data->step)) {
101       return CHOLESKY_FAIL;
102     }
103 
104     // If the new step is already sufficiently small, we have a solution.
105     if (checkRelativeStepSize(data->step, state, state_dim,
106                               solver->params.relative_step_threshold)) {
107       return RELATIVE_STEP_SUFFICIENTLY_SMALL;
108     }
109 
110     // state_new = state + step.
111     vecAdd(state_new, state, data->step, state_dim);
112 
113     // Compute new cost function residual.
114     solver->func(state_new, f_data, data->residual_new, NULL);
115 
116     // Compute ratio of expected to actual cost function gain for this step.
117     const float gain_ratio = computeGainRatio(data->residual,
118                                               data->residual_new,
119                                               data->step, data->gradient,
120                                               damping_factor, state_dim,
121                                               meas_dim);
122 
123     // If gain ratio is positive, the step size is good, otherwise adjust
124     // damping factor and compute a new step.
125     if (gain_ratio > 0.0f) {
126       // Set state to new state vector: state = state_new.
127       memcpy(state, state_new, sizeof(float) * state_dim);
128 
129       // Check if cost function gradient is now sufficiently small,
130       // in which case we have a local solution.
131       if (computeResidualAndGradients(solver->func, state, f_data, data->temp,
132                                       solver->params.gradient_threshold,
133                                       state_dim, meas_dim, data->residual,
134                                       data->gradient, data->hessian)) {
135         return GRADIENT_SUFFICIENTLY_SMALL;
136       }
137 
138       // Update damping factor based on gain ratio.
139       // Note, this update logic comes from Equation 2.21 in the following:
140       // [Madsen, Kaj, Hans Bruun Nielsen, and Ole Tingleff.
141       // "Methods for non-linear least squares problems." (2004)].
142       const float tmp = 2.f * gain_ratio - 1.f;
143       damping_factor *= NANO_MAX(0.33333f, 1.f - tmp * tmp * tmp);
144       v = 2.f;
145     } else {
146       // Update damping factor and try again.
147       damping_factor *= v;
148       v *= 2.f;
149     }
150   }
151 
152   return HIT_MAX_ITERATIONS;
153 }
154 
computeGainRatio(const float * residual,const float * residual_new,const float * step,const float * gradient,float damping_factor,size_t state_dim,size_t meas_dim)155 float computeGainRatio(const float *residual, const float *residual_new,
156                        const float *step, const float *gradient,
157                        float damping_factor, size_t state_dim,
158                        size_t meas_dim) {
159   // Compute true_gain = residual' residual - residual_new' residual_new.
160   const float true_gain = vecDot(residual, residual, meas_dim)
161       - vecDot(residual_new, residual_new, meas_dim);
162 
163   // predicted gain = 0.5 * step' * (damping_factor * step + gradient).
164   float tmp[MAX_LM_STATE_DIMENSION];
165   vecScalarMul(tmp, step, damping_factor, state_dim);
166   vecAddInPlace(tmp, gradient, state_dim);
167   const float predicted_gain = 0.5f * vecDot(step, tmp, state_dim);
168 
169   // Check that we don't divide by zero! If denominator is too small,
170   // set gain_ratio = 1 to use the current step.
171   if (predicted_gain < kEps) {
172     return 1.f;
173   }
174 
175   return true_gain / predicted_gain;
176 }
177 
178 /*
179  * Tests if a solution is found based on the size of the step relative to the
180  * current state magnitude. Returns true if a solution is found.
181  *
182  * TODO(dvitus): consider optimization of this function to use squared norm
183  * rather than norm for relative error computation to avoid square root.
184  */
checkRelativeStepSize(const float * step,const float * state,size_t dim,float relative_error_threshold)185 bool checkRelativeStepSize(const float *step, const float *state,
186                            size_t dim, float relative_error_threshold) {
187   // r = eps * (||x|| + eps)
188   const float relative_error = relative_error_threshold *
189       (vecNorm(state, dim) + relative_error_threshold);
190 
191   // solved if ||step|| <= r
192   // use squared version of this compare to avoid square root.
193   return (vecNormSquared(step, dim) <= relative_error * relative_error);
194 }
195 
196 /*
197  * Computes the residual, f(x), as well as the gradient and hessian of the cost
198  * function for the given state.
199  *
200  * Returns a boolean indicating if the computed gradient is sufficiently small
201  * to indicate that a solution has been found.
202  *
203  * INPUTS:
204  * state: state estimate (x) for which to compute the gradient & hessian.
205  * f_data: pointer to parameter data needed for the residual or jacobian.
206  * jacobian: pointer to temporary memory for storing jacobian.
207  *           Must be at least MAX_LM_STATE_DIMENSION * MAX_LM_MEAS_DIMENSION.
208  * gradient_threshold: if gradient is below this threshold, function returns 1.
209  *
210  * OUTPUTS:
211  * residual: f(x).
212  * gradient: - J' f(x), where J = df(x)/dx
213  * hessian: df^2(x)/dx^2 = J' J
214  */
computeResidualAndGradients(ResidualAndJacobianFunction func,const float * state,const void * f_data,float * jacobian,float gradient_threshold,size_t state_dim,size_t meas_dim,float * residual,float * gradient,float * hessian)215 bool computeResidualAndGradients(ResidualAndJacobianFunction func,
216                                  const float *state, const void *f_data,
217                                  float *jacobian, float gradient_threshold,
218                                  size_t state_dim, size_t meas_dim,
219                                  float *residual, float *gradient,
220                                  float *hessian) {
221   // Compute residual and Jacobian.
222   ASSERT_NOT_NULL(state);
223   ASSERT_NOT_NULL(residual);
224   ASSERT_NOT_NULL(gradient);
225   ASSERT_NOT_NULL(hessian);
226   func(state, f_data, residual, jacobian);
227 
228   // Compute the cost function hessian = jacobian' jacobian and
229   // gradient = -jacobian' residual
230   matTransposeMultiplyMat(hessian, jacobian, meas_dim, state_dim);
231   matTransposeMultiplyVec(gradient, jacobian, residual, meas_dim, state_dim);
232   vecScalarMulInPlace(gradient, -1.f, state_dim);
233 
234   // Check if solution is found (cost function gradient is sufficiently small).
235   return (vecMaxAbsoluteValue(gradient, state_dim) < gradient_threshold);
236 }
237 
238 /*
239  * Computes the Levenberg-Marquardt solver step to satisfy the following:
240  *    (J'J + uI) * step = - J' f
241  *
242  * INPUTS:
243  * gradient:  -J'f
244  * hessian:  J'J
245  * L: temp memory of at least MAX_LM_STATE_DIMENSION * MAX_LM_STATE_DIMENSION.
246  * damping_factor: u
247  * dim: state dimension
248  *
249  * OUTPUTS:
250  * step: solution to the above equation.
251  * Function returns false if the solution fails (due to cholesky failure),
252  * otherwise returns true.
253  *
254  * Note that the hessian is modified in this function in order to reduce
255  * local memory requirements.
256  */
computeStep(const float * gradient,float * hessian,float * L,float damping_factor,size_t dim,float * step)257 bool computeStep(const float *gradient, float *hessian, float *L,
258                  float damping_factor, size_t dim, float *step) {
259 
260   // 1) A = hessian + damping_factor * Identity.
261   matAddConstantDiagonal(hessian, damping_factor, dim);
262 
263   // 2) Solve A * step = gradient for step.
264   // a) compute cholesky decomposition of A = L L^T.
265   if (!matCholeskyDecomposition(L, hessian, dim)) {
266     return false;
267   }
268 
269   // b) solve for step via back-solve.
270   return matLinearSolveCholesky(step, L, gradient, dim);
271 }
272