1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "thread.h"
18
19 #include <limits.h> // for INT_MAX
20 #include <pthread.h>
21 #include <signal.h>
22 #include <sys/resource.h>
23 #include <sys/time.h>
24
25 #if __has_feature(hwaddress_sanitizer)
26 #include <sanitizer/hwasan_interface.h>
27 #else
28 #define __hwasan_tag_pointer(p, t) (p)
29 #endif
30
31 #include <algorithm>
32 #include <bitset>
33 #include <cerrno>
34 #include <iostream>
35 #include <list>
36 #include <sstream>
37
38 #include "android-base/file.h"
39 #include "android-base/stringprintf.h"
40 #include "android-base/strings.h"
41
42 #include "arch/context-inl.h"
43 #include "arch/context.h"
44 #include "art_field-inl.h"
45 #include "art_method-inl.h"
46 #include "base/atomic.h"
47 #include "base/bit_utils.h"
48 #include "base/casts.h"
49 #include "arch/context.h"
50 #include "base/file_utils.h"
51 #include "base/memory_tool.h"
52 #include "base/mutex.h"
53 #include "base/stl_util.h"
54 #include "base/systrace.h"
55 #include "base/timing_logger.h"
56 #include "base/to_str.h"
57 #include "base/utils.h"
58 #include "class_linker-inl.h"
59 #include "class_root-inl.h"
60 #include "debugger.h"
61 #include "dex/descriptors_names.h"
62 #include "dex/dex_file-inl.h"
63 #include "dex/dex_file_annotations.h"
64 #include "dex/dex_file_types.h"
65 #include "entrypoints/entrypoint_utils.h"
66 #include "entrypoints/quick/quick_alloc_entrypoints.h"
67 #include "gc/accounting/card_table-inl.h"
68 #include "gc/accounting/heap_bitmap-inl.h"
69 #include "gc/allocator/rosalloc.h"
70 #include "gc/heap.h"
71 #include "gc/space/space-inl.h"
72 #include "gc_root.h"
73 #include "handle_scope-inl.h"
74 #include "indirect_reference_table-inl.h"
75 #include "instrumentation.h"
76 #include "interpreter/interpreter.h"
77 #include "interpreter/mterp/mterp.h"
78 #include "interpreter/shadow_frame-inl.h"
79 #include "java_frame_root_info.h"
80 #include "jni/java_vm_ext.h"
81 #include "jni/jni_internal.h"
82 #include "mirror/class-alloc-inl.h"
83 #include "mirror/class_loader.h"
84 #include "mirror/object_array-alloc-inl.h"
85 #include "mirror/object_array-inl.h"
86 #include "mirror/stack_trace_element.h"
87 #include "monitor.h"
88 #include "monitor_objects_stack_visitor.h"
89 #include "native_stack_dump.h"
90 #include "nativehelper/scoped_local_ref.h"
91 #include "nativehelper/scoped_utf_chars.h"
92 #include "nterp_helpers.h"
93 #include "nth_caller_visitor.h"
94 #include "oat_quick_method_header.h"
95 #include "obj_ptr-inl.h"
96 #include "object_lock.h"
97 #include "palette/palette.h"
98 #include "quick/quick_method_frame_info.h"
99 #include "quick_exception_handler.h"
100 #include "read_barrier-inl.h"
101 #include "reflection.h"
102 #include "reflective_handle_scope-inl.h"
103 #include "runtime-inl.h"
104 #include "runtime.h"
105 #include "runtime_callbacks.h"
106 #include "scoped_thread_state_change-inl.h"
107 #include "stack.h"
108 #include "stack_map.h"
109 #include "thread-inl.h"
110 #include "thread_list.h"
111 #include "verifier/method_verifier.h"
112 #include "verify_object.h"
113 #include "well_known_classes.h"
114
115 #if ART_USE_FUTEXES
116 #include "linux/futex.h"
117 #include "sys/syscall.h"
118 #ifndef SYS_futex
119 #define SYS_futex __NR_futex
120 #endif
121 #endif // ART_USE_FUTEXES
122
123 namespace art {
124
125 using android::base::StringAppendV;
126 using android::base::StringPrintf;
127
128 extern "C" NO_RETURN void artDeoptimize(Thread* self);
129
130 bool Thread::is_started_ = false;
131 pthread_key_t Thread::pthread_key_self_;
132 ConditionVariable* Thread::resume_cond_ = nullptr;
133 const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA);
134 bool (*Thread::is_sensitive_thread_hook_)() = nullptr;
135 Thread* Thread::jit_sensitive_thread_ = nullptr;
136 #ifndef __BIONIC__
137 thread_local Thread* Thread::self_tls_ = nullptr;
138 #endif
139
140 static constexpr bool kVerifyImageObjectsMarked = kIsDebugBuild;
141
142 // For implicit overflow checks we reserve an extra piece of memory at the bottom
143 // of the stack (lowest memory). The higher portion of the memory
144 // is protected against reads and the lower is available for use while
145 // throwing the StackOverflow exception.
146 constexpr size_t kStackOverflowProtectedSize = 4 * kMemoryToolStackGuardSizeScale * KB;
147
148 static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
149
InitCardTable()150 void Thread::InitCardTable() {
151 tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
152 }
153
UnimplementedEntryPoint()154 static void UnimplementedEntryPoint() {
155 UNIMPLEMENTED(FATAL);
156 }
157
158 void InitEntryPoints(JniEntryPoints* jpoints, QuickEntryPoints* qpoints);
159 void UpdateReadBarrierEntrypoints(QuickEntryPoints* qpoints, bool is_active);
160
SetIsGcMarkingAndUpdateEntrypoints(bool is_marking)161 void Thread::SetIsGcMarkingAndUpdateEntrypoints(bool is_marking) {
162 CHECK(kUseReadBarrier);
163 tls32_.is_gc_marking = is_marking;
164 UpdateReadBarrierEntrypoints(&tlsPtr_.quick_entrypoints, /* is_active= */ is_marking);
165 }
166
InitTlsEntryPoints()167 void Thread::InitTlsEntryPoints() {
168 ScopedTrace trace("InitTlsEntryPoints");
169 // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
170 uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.jni_entrypoints);
171 uintptr_t* end = reinterpret_cast<uintptr_t*>(
172 reinterpret_cast<uint8_t*>(&tlsPtr_.quick_entrypoints) + sizeof(tlsPtr_.quick_entrypoints));
173 for (uintptr_t* it = begin; it != end; ++it) {
174 *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
175 }
176 InitEntryPoints(&tlsPtr_.jni_entrypoints, &tlsPtr_.quick_entrypoints);
177 }
178
ResetQuickAllocEntryPointsForThread()179 void Thread::ResetQuickAllocEntryPointsForThread() {
180 ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints);
181 }
182
183 class DeoptimizationContextRecord {
184 public:
DeoptimizationContextRecord(const JValue & ret_val,bool is_reference,bool from_code,ObjPtr<mirror::Throwable> pending_exception,DeoptimizationMethodType method_type,DeoptimizationContextRecord * link)185 DeoptimizationContextRecord(const JValue& ret_val,
186 bool is_reference,
187 bool from_code,
188 ObjPtr<mirror::Throwable> pending_exception,
189 DeoptimizationMethodType method_type,
190 DeoptimizationContextRecord* link)
191 : ret_val_(ret_val),
192 is_reference_(is_reference),
193 from_code_(from_code),
194 pending_exception_(pending_exception.Ptr()),
195 deopt_method_type_(method_type),
196 link_(link) {}
197
GetReturnValue() const198 JValue GetReturnValue() const { return ret_val_; }
IsReference() const199 bool IsReference() const { return is_reference_; }
GetFromCode() const200 bool GetFromCode() const { return from_code_; }
GetPendingException() const201 ObjPtr<mirror::Throwable> GetPendingException() const { return pending_exception_; }
GetLink() const202 DeoptimizationContextRecord* GetLink() const { return link_; }
GetReturnValueAsGCRoot()203 mirror::Object** GetReturnValueAsGCRoot() {
204 DCHECK(is_reference_);
205 return ret_val_.GetGCRoot();
206 }
GetPendingExceptionAsGCRoot()207 mirror::Object** GetPendingExceptionAsGCRoot() {
208 return reinterpret_cast<mirror::Object**>(&pending_exception_);
209 }
GetDeoptimizationMethodType() const210 DeoptimizationMethodType GetDeoptimizationMethodType() const {
211 return deopt_method_type_;
212 }
213
214 private:
215 // The value returned by the method at the top of the stack before deoptimization.
216 JValue ret_val_;
217
218 // Indicates whether the returned value is a reference. If so, the GC will visit it.
219 const bool is_reference_;
220
221 // Whether the context was created from an explicit deoptimization in the code.
222 const bool from_code_;
223
224 // The exception that was pending before deoptimization (or null if there was no pending
225 // exception).
226 mirror::Throwable* pending_exception_;
227
228 // Whether the context was created for an (idempotent) runtime method.
229 const DeoptimizationMethodType deopt_method_type_;
230
231 // A link to the previous DeoptimizationContextRecord.
232 DeoptimizationContextRecord* const link_;
233
234 DISALLOW_COPY_AND_ASSIGN(DeoptimizationContextRecord);
235 };
236
237 class StackedShadowFrameRecord {
238 public:
StackedShadowFrameRecord(ShadowFrame * shadow_frame,StackedShadowFrameType type,StackedShadowFrameRecord * link)239 StackedShadowFrameRecord(ShadowFrame* shadow_frame,
240 StackedShadowFrameType type,
241 StackedShadowFrameRecord* link)
242 : shadow_frame_(shadow_frame),
243 type_(type),
244 link_(link) {}
245
GetShadowFrame() const246 ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
GetType() const247 StackedShadowFrameType GetType() const { return type_; }
GetLink() const248 StackedShadowFrameRecord* GetLink() const { return link_; }
249
250 private:
251 ShadowFrame* const shadow_frame_;
252 const StackedShadowFrameType type_;
253 StackedShadowFrameRecord* const link_;
254
255 DISALLOW_COPY_AND_ASSIGN(StackedShadowFrameRecord);
256 };
257
PushDeoptimizationContext(const JValue & return_value,bool is_reference,ObjPtr<mirror::Throwable> exception,bool from_code,DeoptimizationMethodType method_type)258 void Thread::PushDeoptimizationContext(const JValue& return_value,
259 bool is_reference,
260 ObjPtr<mirror::Throwable> exception,
261 bool from_code,
262 DeoptimizationMethodType method_type) {
263 DeoptimizationContextRecord* record = new DeoptimizationContextRecord(
264 return_value,
265 is_reference,
266 from_code,
267 exception,
268 method_type,
269 tlsPtr_.deoptimization_context_stack);
270 tlsPtr_.deoptimization_context_stack = record;
271 }
272
PopDeoptimizationContext(JValue * result,ObjPtr<mirror::Throwable> * exception,bool * from_code,DeoptimizationMethodType * method_type)273 void Thread::PopDeoptimizationContext(JValue* result,
274 ObjPtr<mirror::Throwable>* exception,
275 bool* from_code,
276 DeoptimizationMethodType* method_type) {
277 AssertHasDeoptimizationContext();
278 DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
279 tlsPtr_.deoptimization_context_stack = record->GetLink();
280 result->SetJ(record->GetReturnValue().GetJ());
281 *exception = record->GetPendingException();
282 *from_code = record->GetFromCode();
283 *method_type = record->GetDeoptimizationMethodType();
284 delete record;
285 }
286
AssertHasDeoptimizationContext()287 void Thread::AssertHasDeoptimizationContext() {
288 CHECK(tlsPtr_.deoptimization_context_stack != nullptr)
289 << "No deoptimization context for thread " << *this;
290 }
291
292 enum {
293 kPermitAvailable = 0, // Incrementing consumes the permit
294 kNoPermit = 1, // Incrementing marks as waiter waiting
295 kNoPermitWaiterWaiting = 2
296 };
297
Park(bool is_absolute,int64_t time)298 void Thread::Park(bool is_absolute, int64_t time) {
299 DCHECK(this == Thread::Current());
300 #if ART_USE_FUTEXES
301 // Consume the permit, or mark as waiting. This cannot cause park_state to go
302 // outside of its valid range (0, 1, 2), because in all cases where 2 is
303 // assigned it is set back to 1 before returning, and this method cannot run
304 // concurrently with itself since it operates on the current thread.
305 int old_state = tls32_.park_state_.fetch_add(1, std::memory_order_relaxed);
306 if (old_state == kNoPermit) {
307 // no permit was available. block thread until later.
308 Runtime::Current()->GetRuntimeCallbacks()->ThreadParkStart(is_absolute, time);
309 bool timed_out = false;
310 if (!is_absolute && time == 0) {
311 // Thread.getState() is documented to return waiting for untimed parks.
312 ScopedThreadSuspension sts(this, ThreadState::kWaiting);
313 DCHECK_EQ(NumberOfHeldMutexes(), 0u);
314 int result = futex(tls32_.park_state_.Address(),
315 FUTEX_WAIT_PRIVATE,
316 /* sleep if val = */ kNoPermitWaiterWaiting,
317 /* timeout */ nullptr,
318 nullptr,
319 0);
320 // This errno check must happen before the scope is closed, to ensure that
321 // no destructors (such as ScopedThreadSuspension) overwrite errno.
322 if (result == -1) {
323 switch (errno) {
324 case EAGAIN:
325 FALLTHROUGH_INTENDED;
326 case EINTR: break; // park() is allowed to spuriously return
327 default: PLOG(FATAL) << "Failed to park";
328 }
329 }
330 } else if (time > 0) {
331 // Only actually suspend and futex_wait if we're going to wait for some
332 // positive amount of time - the kernel will reject negative times with
333 // EINVAL, and a zero time will just noop.
334
335 // Thread.getState() is documented to return timed wait for timed parks.
336 ScopedThreadSuspension sts(this, ThreadState::kTimedWaiting);
337 DCHECK_EQ(NumberOfHeldMutexes(), 0u);
338 timespec timespec;
339 int result = 0;
340 if (is_absolute) {
341 // Time is millis when scheduled for an absolute time
342 timespec.tv_nsec = (time % 1000) * 1000000;
343 timespec.tv_sec = time / 1000;
344 // This odd looking pattern is recommended by futex documentation to
345 // wait until an absolute deadline, with otherwise identical behavior to
346 // FUTEX_WAIT_PRIVATE. This also allows parkUntil() to return at the
347 // correct time when the system clock changes.
348 result = futex(tls32_.park_state_.Address(),
349 FUTEX_WAIT_BITSET_PRIVATE | FUTEX_CLOCK_REALTIME,
350 /* sleep if val = */ kNoPermitWaiterWaiting,
351 ×pec,
352 nullptr,
353 FUTEX_BITSET_MATCH_ANY);
354 } else {
355 // Time is nanos when scheduled for a relative time
356 timespec.tv_sec = time / 1000000000;
357 timespec.tv_nsec = time % 1000000000;
358 result = futex(tls32_.park_state_.Address(),
359 FUTEX_WAIT_PRIVATE,
360 /* sleep if val = */ kNoPermitWaiterWaiting,
361 ×pec,
362 nullptr,
363 0);
364 }
365 // This errno check must happen before the scope is closed, to ensure that
366 // no destructors (such as ScopedThreadSuspension) overwrite errno.
367 if (result == -1) {
368 switch (errno) {
369 case ETIMEDOUT:
370 timed_out = true;
371 FALLTHROUGH_INTENDED;
372 case EAGAIN:
373 case EINTR: break; // park() is allowed to spuriously return
374 default: PLOG(FATAL) << "Failed to park";
375 }
376 }
377 }
378 // Mark as no longer waiting, and consume permit if there is one.
379 tls32_.park_state_.store(kNoPermit, std::memory_order_relaxed);
380 // TODO: Call to signal jvmti here
381 Runtime::Current()->GetRuntimeCallbacks()->ThreadParkFinished(timed_out);
382 } else {
383 // the fetch_add has consumed the permit. immediately return.
384 DCHECK_EQ(old_state, kPermitAvailable);
385 }
386 #else
387 #pragma clang diagnostic push
388 #pragma clang diagnostic warning "-W#warnings"
389 #warning "LockSupport.park/unpark implemented as noops without FUTEX support."
390 #pragma clang diagnostic pop
391 UNUSED(is_absolute, time);
392 UNIMPLEMENTED(WARNING);
393 sched_yield();
394 #endif
395 }
396
Unpark()397 void Thread::Unpark() {
398 #if ART_USE_FUTEXES
399 // Set permit available; will be consumed either by fetch_add (when the thread
400 // tries to park) or store (when the parked thread is woken up)
401 if (tls32_.park_state_.exchange(kPermitAvailable, std::memory_order_relaxed)
402 == kNoPermitWaiterWaiting) {
403 int result = futex(tls32_.park_state_.Address(),
404 FUTEX_WAKE_PRIVATE,
405 /* number of waiters = */ 1,
406 nullptr,
407 nullptr,
408 0);
409 if (result == -1) {
410 PLOG(FATAL) << "Failed to unpark";
411 }
412 }
413 #else
414 UNIMPLEMENTED(WARNING);
415 #endif
416 }
417
PushStackedShadowFrame(ShadowFrame * sf,StackedShadowFrameType type)418 void Thread::PushStackedShadowFrame(ShadowFrame* sf, StackedShadowFrameType type) {
419 StackedShadowFrameRecord* record = new StackedShadowFrameRecord(
420 sf, type, tlsPtr_.stacked_shadow_frame_record);
421 tlsPtr_.stacked_shadow_frame_record = record;
422 }
423
PopStackedShadowFrame(StackedShadowFrameType type,bool must_be_present)424 ShadowFrame* Thread::PopStackedShadowFrame(StackedShadowFrameType type, bool must_be_present) {
425 StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
426 if (must_be_present) {
427 DCHECK(record != nullptr);
428 } else {
429 if (record == nullptr || record->GetType() != type) {
430 return nullptr;
431 }
432 }
433 tlsPtr_.stacked_shadow_frame_record = record->GetLink();
434 ShadowFrame* shadow_frame = record->GetShadowFrame();
435 delete record;
436 return shadow_frame;
437 }
438
439 class FrameIdToShadowFrame {
440 public:
Create(size_t frame_id,ShadowFrame * shadow_frame,FrameIdToShadowFrame * next,size_t num_vregs)441 static FrameIdToShadowFrame* Create(size_t frame_id,
442 ShadowFrame* shadow_frame,
443 FrameIdToShadowFrame* next,
444 size_t num_vregs) {
445 // Append a bool array at the end to keep track of what vregs are updated by the debugger.
446 uint8_t* memory = new uint8_t[sizeof(FrameIdToShadowFrame) + sizeof(bool) * num_vregs];
447 return new (memory) FrameIdToShadowFrame(frame_id, shadow_frame, next);
448 }
449
Delete(FrameIdToShadowFrame * f)450 static void Delete(FrameIdToShadowFrame* f) {
451 uint8_t* memory = reinterpret_cast<uint8_t*>(f);
452 delete[] memory;
453 }
454
GetFrameId() const455 size_t GetFrameId() const { return frame_id_; }
GetShadowFrame() const456 ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
GetNext() const457 FrameIdToShadowFrame* GetNext() const { return next_; }
SetNext(FrameIdToShadowFrame * next)458 void SetNext(FrameIdToShadowFrame* next) { next_ = next; }
GetUpdatedVRegFlags()459 bool* GetUpdatedVRegFlags() {
460 return updated_vreg_flags_;
461 }
462
463 private:
FrameIdToShadowFrame(size_t frame_id,ShadowFrame * shadow_frame,FrameIdToShadowFrame * next)464 FrameIdToShadowFrame(size_t frame_id,
465 ShadowFrame* shadow_frame,
466 FrameIdToShadowFrame* next)
467 : frame_id_(frame_id),
468 shadow_frame_(shadow_frame),
469 next_(next) {}
470
471 const size_t frame_id_;
472 ShadowFrame* const shadow_frame_;
473 FrameIdToShadowFrame* next_;
474 bool updated_vreg_flags_[0];
475
476 DISALLOW_COPY_AND_ASSIGN(FrameIdToShadowFrame);
477 };
478
FindFrameIdToShadowFrame(FrameIdToShadowFrame * head,size_t frame_id)479 static FrameIdToShadowFrame* FindFrameIdToShadowFrame(FrameIdToShadowFrame* head,
480 size_t frame_id) {
481 FrameIdToShadowFrame* found = nullptr;
482 for (FrameIdToShadowFrame* record = head; record != nullptr; record = record->GetNext()) {
483 if (record->GetFrameId() == frame_id) {
484 if (kIsDebugBuild) {
485 // Check we have at most one record for this frame.
486 CHECK(found == nullptr) << "Multiple records for the frame " << frame_id;
487 found = record;
488 } else {
489 return record;
490 }
491 }
492 }
493 return found;
494 }
495
FindDebuggerShadowFrame(size_t frame_id)496 ShadowFrame* Thread::FindDebuggerShadowFrame(size_t frame_id) {
497 FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
498 tlsPtr_.frame_id_to_shadow_frame, frame_id);
499 if (record != nullptr) {
500 return record->GetShadowFrame();
501 }
502 return nullptr;
503 }
504
505 // Must only be called when FindDebuggerShadowFrame(frame_id) returns non-nullptr.
GetUpdatedVRegFlags(size_t frame_id)506 bool* Thread::GetUpdatedVRegFlags(size_t frame_id) {
507 FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
508 tlsPtr_.frame_id_to_shadow_frame, frame_id);
509 CHECK(record != nullptr);
510 return record->GetUpdatedVRegFlags();
511 }
512
FindOrCreateDebuggerShadowFrame(size_t frame_id,uint32_t num_vregs,ArtMethod * method,uint32_t dex_pc)513 ShadowFrame* Thread::FindOrCreateDebuggerShadowFrame(size_t frame_id,
514 uint32_t num_vregs,
515 ArtMethod* method,
516 uint32_t dex_pc) {
517 ShadowFrame* shadow_frame = FindDebuggerShadowFrame(frame_id);
518 if (shadow_frame != nullptr) {
519 return shadow_frame;
520 }
521 VLOG(deopt) << "Create pre-deopted ShadowFrame for " << ArtMethod::PrettyMethod(method);
522 shadow_frame = ShadowFrame::CreateDeoptimizedFrame(num_vregs, nullptr, method, dex_pc);
523 FrameIdToShadowFrame* record = FrameIdToShadowFrame::Create(frame_id,
524 shadow_frame,
525 tlsPtr_.frame_id_to_shadow_frame,
526 num_vregs);
527 for (uint32_t i = 0; i < num_vregs; i++) {
528 // Do this to clear all references for root visitors.
529 shadow_frame->SetVRegReference(i, nullptr);
530 // This flag will be changed to true if the debugger modifies the value.
531 record->GetUpdatedVRegFlags()[i] = false;
532 }
533 tlsPtr_.frame_id_to_shadow_frame = record;
534 return shadow_frame;
535 }
536
GetCustomTLS(const char * key)537 TLSData* Thread::GetCustomTLS(const char* key) {
538 MutexLock mu(Thread::Current(), *Locks::custom_tls_lock_);
539 auto it = custom_tls_.find(key);
540 return (it != custom_tls_.end()) ? it->second.get() : nullptr;
541 }
542
SetCustomTLS(const char * key,TLSData * data)543 void Thread::SetCustomTLS(const char* key, TLSData* data) {
544 // We will swap the old data (which might be nullptr) with this and then delete it outside of the
545 // custom_tls_lock_.
546 std::unique_ptr<TLSData> old_data(data);
547 {
548 MutexLock mu(Thread::Current(), *Locks::custom_tls_lock_);
549 custom_tls_.GetOrCreate(key, []() { return std::unique_ptr<TLSData>(); }).swap(old_data);
550 }
551 }
552
RemoveDebuggerShadowFrameMapping(size_t frame_id)553 void Thread::RemoveDebuggerShadowFrameMapping(size_t frame_id) {
554 FrameIdToShadowFrame* head = tlsPtr_.frame_id_to_shadow_frame;
555 if (head->GetFrameId() == frame_id) {
556 tlsPtr_.frame_id_to_shadow_frame = head->GetNext();
557 FrameIdToShadowFrame::Delete(head);
558 return;
559 }
560 FrameIdToShadowFrame* prev = head;
561 for (FrameIdToShadowFrame* record = head->GetNext();
562 record != nullptr;
563 prev = record, record = record->GetNext()) {
564 if (record->GetFrameId() == frame_id) {
565 prev->SetNext(record->GetNext());
566 FrameIdToShadowFrame::Delete(record);
567 return;
568 }
569 }
570 LOG(FATAL) << "No shadow frame for frame " << frame_id;
571 UNREACHABLE();
572 }
573
InitTid()574 void Thread::InitTid() {
575 tls32_.tid = ::art::GetTid();
576 }
577
InitAfterFork()578 void Thread::InitAfterFork() {
579 // One thread (us) survived the fork, but we have a new tid so we need to
580 // update the value stashed in this Thread*.
581 InitTid();
582 }
583
DeleteJPeer(JNIEnv * env)584 void Thread::DeleteJPeer(JNIEnv* env) {
585 // Make sure nothing can observe both opeer and jpeer set at the same time.
586 jobject old_jpeer = tlsPtr_.jpeer;
587 CHECK(old_jpeer != nullptr);
588 tlsPtr_.jpeer = nullptr;
589 env->DeleteGlobalRef(old_jpeer);
590 }
591
CreateCallback(void * arg)592 void* Thread::CreateCallback(void* arg) {
593 Thread* self = reinterpret_cast<Thread*>(arg);
594 Runtime* runtime = Runtime::Current();
595 if (runtime == nullptr) {
596 LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
597 return nullptr;
598 }
599 {
600 // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
601 // after self->Init().
602 MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
603 // Check that if we got here we cannot be shutting down (as shutdown should never have started
604 // while threads are being born).
605 CHECK(!runtime->IsShuttingDownLocked());
606 // Note: given that the JNIEnv is created in the parent thread, the only failure point here is
607 // a mess in InitStackHwm. We do not have a reasonable way to recover from that, so abort
608 // the runtime in such a case. In case this ever changes, we need to make sure here to
609 // delete the tmp_jni_env, as we own it at this point.
610 CHECK(self->Init(runtime->GetThreadList(), runtime->GetJavaVM(), self->tlsPtr_.tmp_jni_env));
611 self->tlsPtr_.tmp_jni_env = nullptr;
612 Runtime::Current()->EndThreadBirth();
613 }
614 {
615 ScopedObjectAccess soa(self);
616 self->InitStringEntryPoints();
617
618 // Copy peer into self, deleting global reference when done.
619 CHECK(self->tlsPtr_.jpeer != nullptr);
620 self->tlsPtr_.opeer = soa.Decode<mirror::Object>(self->tlsPtr_.jpeer).Ptr();
621 // Make sure nothing can observe both opeer and jpeer set at the same time.
622 self->DeleteJPeer(self->GetJniEnv());
623 self->SetThreadName(self->GetThreadName()->ToModifiedUtf8().c_str());
624
625 ArtField* priorityField = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority);
626 self->SetNativePriority(priorityField->GetInt(self->tlsPtr_.opeer));
627
628 runtime->GetRuntimeCallbacks()->ThreadStart(self);
629
630 // Unpark ourselves if the java peer was unparked before it started (see
631 // b/28845097#comment49 for more information)
632
633 ArtField* unparkedField = jni::DecodeArtField(
634 WellKnownClasses::java_lang_Thread_unparkedBeforeStart);
635 bool should_unpark = false;
636 {
637 // Hold the lock here, so that if another thread calls unpark before the thread starts
638 // we don't observe the unparkedBeforeStart field before the unparker writes to it,
639 // which could cause a lost unpark.
640 art::MutexLock mu(soa.Self(), *art::Locks::thread_list_lock_);
641 should_unpark = unparkedField->GetBoolean(self->tlsPtr_.opeer) == JNI_TRUE;
642 }
643 if (should_unpark) {
644 self->Unpark();
645 }
646 // Invoke the 'run' method of our java.lang.Thread.
647 ObjPtr<mirror::Object> receiver = self->tlsPtr_.opeer;
648 jmethodID mid = WellKnownClasses::java_lang_Thread_run;
649 ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(receiver));
650 InvokeVirtualOrInterfaceWithJValues(soa, ref.get(), mid, nullptr);
651 }
652 // Detach and delete self.
653 Runtime::Current()->GetThreadList()->Unregister(self);
654
655 return nullptr;
656 }
657
FromManagedThread(const ScopedObjectAccessAlreadyRunnable & soa,ObjPtr<mirror::Object> thread_peer)658 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
659 ObjPtr<mirror::Object> thread_peer) {
660 ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer);
661 Thread* result = reinterpret_cast64<Thread*>(f->GetLong(thread_peer));
662 // Check that if we have a result it is either suspended or we hold the thread_list_lock_
663 // to stop it from going away.
664 if (kIsDebugBuild) {
665 MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
666 if (result != nullptr && !result->IsSuspended()) {
667 Locks::thread_list_lock_->AssertHeld(soa.Self());
668 }
669 }
670 return result;
671 }
672
FromManagedThread(const ScopedObjectAccessAlreadyRunnable & soa,jobject java_thread)673 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
674 jobject java_thread) {
675 return FromManagedThread(soa, soa.Decode<mirror::Object>(java_thread));
676 }
677
FixStackSize(size_t stack_size)678 static size_t FixStackSize(size_t stack_size) {
679 // A stack size of zero means "use the default".
680 if (stack_size == 0) {
681 stack_size = Runtime::Current()->GetDefaultStackSize();
682 }
683
684 // Dalvik used the bionic pthread default stack size for native threads,
685 // so include that here to support apps that expect large native stacks.
686 stack_size += 1 * MB;
687
688 // Under sanitization, frames of the interpreter may become bigger, both for C code as
689 // well as the ShadowFrame. Ensure a larger minimum size. Otherwise initialization
690 // of all core classes cannot be done in all test circumstances.
691 if (kMemoryToolIsAvailable) {
692 stack_size = std::max(2 * MB, stack_size);
693 }
694
695 // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
696 if (stack_size < PTHREAD_STACK_MIN) {
697 stack_size = PTHREAD_STACK_MIN;
698 }
699
700 if (Runtime::Current()->ExplicitStackOverflowChecks()) {
701 // It's likely that callers are trying to ensure they have at least a certain amount of
702 // stack space, so we should add our reserved space on top of what they requested, rather
703 // than implicitly take it away from them.
704 stack_size += GetStackOverflowReservedBytes(kRuntimeISA);
705 } else {
706 // If we are going to use implicit stack checks, allocate space for the protected
707 // region at the bottom of the stack.
708 stack_size += Thread::kStackOverflowImplicitCheckSize +
709 GetStackOverflowReservedBytes(kRuntimeISA);
710 }
711
712 // Some systems require the stack size to be a multiple of the system page size, so round up.
713 stack_size = RoundUp(stack_size, kPageSize);
714
715 return stack_size;
716 }
717
718 // Return the nearest page-aligned address below the current stack top.
719 NO_INLINE
FindStackTop()720 static uint8_t* FindStackTop() {
721 return reinterpret_cast<uint8_t*>(
722 AlignDown(__builtin_frame_address(0), kPageSize));
723 }
724
725 // Install a protected region in the stack. This is used to trigger a SIGSEGV if a stack
726 // overflow is detected. It is located right below the stack_begin_.
727 ATTRIBUTE_NO_SANITIZE_ADDRESS
InstallImplicitProtection()728 void Thread::InstallImplicitProtection() {
729 uint8_t* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
730 // Page containing current top of stack.
731 uint8_t* stack_top = FindStackTop();
732
733 // Try to directly protect the stack.
734 VLOG(threads) << "installing stack protected region at " << std::hex <<
735 static_cast<void*>(pregion) << " to " <<
736 static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
737 if (ProtectStack(/* fatal_on_error= */ false)) {
738 // Tell the kernel that we won't be needing these pages any more.
739 // NB. madvise will probably write zeroes into the memory (on linux it does).
740 uint32_t unwanted_size = stack_top - pregion - kPageSize;
741 madvise(pregion, unwanted_size, MADV_DONTNEED);
742 return;
743 }
744
745 // There is a little complexity here that deserves a special mention. On some
746 // architectures, the stack is created using a VM_GROWSDOWN flag
747 // to prevent memory being allocated when it's not needed. This flag makes the
748 // kernel only allocate memory for the stack by growing down in memory. Because we
749 // want to put an mprotected region far away from that at the stack top, we need
750 // to make sure the pages for the stack are mapped in before we call mprotect.
751 //
752 // The failed mprotect in UnprotectStack is an indication of a thread with VM_GROWSDOWN
753 // with a non-mapped stack (usually only the main thread).
754 //
755 // We map in the stack by reading every page from the stack bottom (highest address)
756 // to the stack top. (We then madvise this away.) This must be done by reading from the
757 // current stack pointer downwards.
758 //
759 // Accesses too far below the current machine register corresponding to the stack pointer (e.g.,
760 // ESP on x86[-32], SP on ARM) might cause a SIGSEGV (at least on x86 with newer kernels). We
761 // thus have to move the stack pointer. We do this portably by using a recursive function with a
762 // large stack frame size.
763
764 // (Defensively) first remove the protection on the protected region as we'll want to read
765 // and write it. Ignore errors.
766 UnprotectStack();
767
768 VLOG(threads) << "Need to map in stack for thread at " << std::hex <<
769 static_cast<void*>(pregion);
770
771 struct RecurseDownStack {
772 // This function has an intentionally large stack size.
773 #pragma GCC diagnostic push
774 #pragma GCC diagnostic ignored "-Wframe-larger-than="
775 NO_INLINE
776 static void Touch(uintptr_t target) {
777 volatile size_t zero = 0;
778 // Use a large local volatile array to ensure a large frame size. Do not use anything close
779 // to a full page for ASAN. It would be nice to ensure the frame size is at most a page, but
780 // there is no pragma support for this.
781 // Note: for ASAN we need to shrink the array a bit, as there's other overhead.
782 constexpr size_t kAsanMultiplier =
783 #ifdef ADDRESS_SANITIZER
784 2u;
785 #else
786 1u;
787 #endif
788 // Keep space uninitialized as it can overflow the stack otherwise (should Clang actually
789 // auto-initialize this local variable).
790 volatile char space[kPageSize - (kAsanMultiplier * 256)] __attribute__((uninitialized));
791 char sink ATTRIBUTE_UNUSED = space[zero]; // NOLINT
792 // Remove tag from the pointer. Nop in non-hwasan builds.
793 uintptr_t addr = reinterpret_cast<uintptr_t>(__hwasan_tag_pointer(space, 0));
794 if (addr >= target + kPageSize) {
795 Touch(target);
796 }
797 zero *= 2; // Try to avoid tail recursion.
798 }
799 #pragma GCC diagnostic pop
800 };
801 RecurseDownStack::Touch(reinterpret_cast<uintptr_t>(pregion));
802
803 VLOG(threads) << "(again) installing stack protected region at " << std::hex <<
804 static_cast<void*>(pregion) << " to " <<
805 static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
806
807 // Protect the bottom of the stack to prevent read/write to it.
808 ProtectStack(/* fatal_on_error= */ true);
809
810 // Tell the kernel that we won't be needing these pages any more.
811 // NB. madvise will probably write zeroes into the memory (on linux it does).
812 uint32_t unwanted_size = stack_top - pregion - kPageSize;
813 madvise(pregion, unwanted_size, MADV_DONTNEED);
814 }
815
CreateNativeThread(JNIEnv * env,jobject java_peer,size_t stack_size,bool is_daemon)816 void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
817 CHECK(java_peer != nullptr);
818 Thread* self = static_cast<JNIEnvExt*>(env)->GetSelf();
819
820 if (VLOG_IS_ON(threads)) {
821 ScopedObjectAccess soa(env);
822
823 ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name);
824 ObjPtr<mirror::String> java_name =
825 f->GetObject(soa.Decode<mirror::Object>(java_peer))->AsString();
826 std::string thread_name;
827 if (java_name != nullptr) {
828 thread_name = java_name->ToModifiedUtf8();
829 } else {
830 thread_name = "(Unnamed)";
831 }
832
833 VLOG(threads) << "Creating native thread for " << thread_name;
834 self->Dump(LOG_STREAM(INFO));
835 }
836
837 Runtime* runtime = Runtime::Current();
838
839 // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
840 bool thread_start_during_shutdown = false;
841 {
842 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
843 if (runtime->IsShuttingDownLocked()) {
844 thread_start_during_shutdown = true;
845 } else {
846 runtime->StartThreadBirth();
847 }
848 }
849 if (thread_start_during_shutdown) {
850 ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
851 env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
852 return;
853 }
854
855 Thread* child_thread = new Thread(is_daemon);
856 // Use global JNI ref to hold peer live while child thread starts.
857 child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
858 stack_size = FixStackSize(stack_size);
859
860 // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing
861 // to assign it.
862 env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
863 reinterpret_cast<jlong>(child_thread));
864
865 // Try to allocate a JNIEnvExt for the thread. We do this here as we might be out of memory and
866 // do not have a good way to report this on the child's side.
867 std::string error_msg;
868 std::unique_ptr<JNIEnvExt> child_jni_env_ext(
869 JNIEnvExt::Create(child_thread, Runtime::Current()->GetJavaVM(), &error_msg));
870
871 int pthread_create_result = 0;
872 if (child_jni_env_ext.get() != nullptr) {
873 pthread_t new_pthread;
874 pthread_attr_t attr;
875 child_thread->tlsPtr_.tmp_jni_env = child_jni_env_ext.get();
876 CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
877 CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED),
878 "PTHREAD_CREATE_DETACHED");
879 CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
880 pthread_create_result = pthread_create(&new_pthread,
881 &attr,
882 Thread::CreateCallback,
883 child_thread);
884 CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
885
886 if (pthread_create_result == 0) {
887 // pthread_create started the new thread. The child is now responsible for managing the
888 // JNIEnvExt we created.
889 // Note: we can't check for tmp_jni_env == nullptr, as that would require synchronization
890 // between the threads.
891 child_jni_env_ext.release(); // NOLINT pthreads API.
892 return;
893 }
894 }
895
896 // Either JNIEnvExt::Create or pthread_create(3) failed, so clean up.
897 {
898 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
899 runtime->EndThreadBirth();
900 }
901 // Manually delete the global reference since Thread::Init will not have been run. Make sure
902 // nothing can observe both opeer and jpeer set at the same time.
903 child_thread->DeleteJPeer(env);
904 delete child_thread;
905 child_thread = nullptr;
906 // TODO: remove from thread group?
907 env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
908 {
909 std::string msg(child_jni_env_ext.get() == nullptr ?
910 StringPrintf("Could not allocate JNI Env: %s", error_msg.c_str()) :
911 StringPrintf("pthread_create (%s stack) failed: %s",
912 PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
913 ScopedObjectAccess soa(env);
914 soa.Self()->ThrowOutOfMemoryError(msg.c_str());
915 }
916 }
917
Init(ThreadList * thread_list,JavaVMExt * java_vm,JNIEnvExt * jni_env_ext)918 bool Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm, JNIEnvExt* jni_env_ext) {
919 // This function does all the initialization that must be run by the native thread it applies to.
920 // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
921 // we can handshake with the corresponding native thread when it's ready.) Check this native
922 // thread hasn't been through here already...
923 CHECK(Thread::Current() == nullptr);
924
925 // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
926 // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
927 tlsPtr_.pthread_self = pthread_self();
928 CHECK(is_started_);
929
930 ScopedTrace trace("Thread::Init");
931
932 SetUpAlternateSignalStack();
933 if (!InitStackHwm()) {
934 return false;
935 }
936 InitCpu();
937 InitTlsEntryPoints();
938 RemoveSuspendTrigger();
939 InitCardTable();
940 InitTid();
941 {
942 ScopedTrace trace2("InitInterpreterTls");
943 interpreter::InitInterpreterTls(this);
944 }
945
946 #ifdef __BIONIC__
947 __get_tls()[TLS_SLOT_ART_THREAD_SELF] = this;
948 #else
949 CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
950 Thread::self_tls_ = this;
951 #endif
952 DCHECK_EQ(Thread::Current(), this);
953
954 tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);
955
956 if (jni_env_ext != nullptr) {
957 DCHECK_EQ(jni_env_ext->GetVm(), java_vm);
958 DCHECK_EQ(jni_env_ext->GetSelf(), this);
959 tlsPtr_.jni_env = jni_env_ext;
960 } else {
961 std::string error_msg;
962 tlsPtr_.jni_env = JNIEnvExt::Create(this, java_vm, &error_msg);
963 if (tlsPtr_.jni_env == nullptr) {
964 LOG(ERROR) << "Failed to create JNIEnvExt: " << error_msg;
965 return false;
966 }
967 }
968
969 ScopedTrace trace3("ThreadList::Register");
970 thread_list->Register(this);
971 return true;
972 }
973
974 template <typename PeerAction>
Attach(const char * thread_name,bool as_daemon,PeerAction peer_action)975 Thread* Thread::Attach(const char* thread_name, bool as_daemon, PeerAction peer_action) {
976 Runtime* runtime = Runtime::Current();
977 ScopedTrace trace("Thread::Attach");
978 if (runtime == nullptr) {
979 LOG(ERROR) << "Thread attaching to non-existent runtime: " <<
980 ((thread_name != nullptr) ? thread_name : "(Unnamed)");
981 return nullptr;
982 }
983 Thread* self;
984 {
985 ScopedTrace trace2("Thread birth");
986 MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
987 if (runtime->IsShuttingDownLocked()) {
988 LOG(WARNING) << "Thread attaching while runtime is shutting down: " <<
989 ((thread_name != nullptr) ? thread_name : "(Unnamed)");
990 return nullptr;
991 } else {
992 Runtime::Current()->StartThreadBirth();
993 self = new Thread(as_daemon);
994 bool init_success = self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
995 Runtime::Current()->EndThreadBirth();
996 if (!init_success) {
997 delete self;
998 return nullptr;
999 }
1000 }
1001 }
1002
1003 self->InitStringEntryPoints();
1004
1005 CHECK_NE(self->GetState(), kRunnable);
1006 self->SetState(kNative);
1007
1008 // Run the action that is acting on the peer.
1009 if (!peer_action(self)) {
1010 runtime->GetThreadList()->Unregister(self);
1011 // Unregister deletes self, no need to do this here.
1012 return nullptr;
1013 }
1014
1015 if (VLOG_IS_ON(threads)) {
1016 if (thread_name != nullptr) {
1017 VLOG(threads) << "Attaching thread " << thread_name;
1018 } else {
1019 VLOG(threads) << "Attaching unnamed thread.";
1020 }
1021 ScopedObjectAccess soa(self);
1022 self->Dump(LOG_STREAM(INFO));
1023 }
1024
1025 {
1026 ScopedObjectAccess soa(self);
1027 runtime->GetRuntimeCallbacks()->ThreadStart(self);
1028 }
1029
1030 return self;
1031 }
1032
Attach(const char * thread_name,bool as_daemon,jobject thread_group,bool create_peer)1033 Thread* Thread::Attach(const char* thread_name,
1034 bool as_daemon,
1035 jobject thread_group,
1036 bool create_peer) {
1037 auto create_peer_action = [&](Thread* self) {
1038 // If we're the main thread, ClassLinker won't be created until after we're attached,
1039 // so that thread needs a two-stage attach. Regular threads don't need this hack.
1040 // In the compiler, all threads need this hack, because no-one's going to be getting
1041 // a native peer!
1042 if (create_peer) {
1043 self->CreatePeer(thread_name, as_daemon, thread_group);
1044 if (self->IsExceptionPending()) {
1045 // We cannot keep the exception around, as we're deleting self. Try to be helpful and log
1046 // it.
1047 {
1048 ScopedObjectAccess soa(self);
1049 LOG(ERROR) << "Exception creating thread peer:";
1050 LOG(ERROR) << self->GetException()->Dump();
1051 self->ClearException();
1052 }
1053 return false;
1054 }
1055 } else {
1056 // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
1057 if (thread_name != nullptr) {
1058 self->tlsPtr_.name->assign(thread_name);
1059 ::art::SetThreadName(thread_name);
1060 } else if (self->GetJniEnv()->IsCheckJniEnabled()) {
1061 LOG(WARNING) << *Thread::Current() << " attached without supplying a name";
1062 }
1063 }
1064 return true;
1065 };
1066 return Attach(thread_name, as_daemon, create_peer_action);
1067 }
1068
Attach(const char * thread_name,bool as_daemon,jobject thread_peer)1069 Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_peer) {
1070 auto set_peer_action = [&](Thread* self) {
1071 // Install the given peer.
1072 {
1073 DCHECK(self == Thread::Current());
1074 ScopedObjectAccess soa(self);
1075 self->tlsPtr_.opeer = soa.Decode<mirror::Object>(thread_peer).Ptr();
1076 }
1077 self->GetJniEnv()->SetLongField(thread_peer,
1078 WellKnownClasses::java_lang_Thread_nativePeer,
1079 reinterpret_cast64<jlong>(self));
1080 return true;
1081 };
1082 return Attach(thread_name, as_daemon, set_peer_action);
1083 }
1084
CreatePeer(const char * name,bool as_daemon,jobject thread_group)1085 void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
1086 Runtime* runtime = Runtime::Current();
1087 CHECK(runtime->IsStarted());
1088 JNIEnv* env = tlsPtr_.jni_env;
1089
1090 if (thread_group == nullptr) {
1091 thread_group = runtime->GetMainThreadGroup();
1092 }
1093 ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
1094 // Add missing null check in case of OOM b/18297817
1095 if (name != nullptr && thread_name.get() == nullptr) {
1096 CHECK(IsExceptionPending());
1097 return;
1098 }
1099 jint thread_priority = GetNativePriority();
1100 jboolean thread_is_daemon = as_daemon;
1101
1102 ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
1103 if (peer.get() == nullptr) {
1104 CHECK(IsExceptionPending());
1105 return;
1106 }
1107 {
1108 ScopedObjectAccess soa(this);
1109 tlsPtr_.opeer = soa.Decode<mirror::Object>(peer.get()).Ptr();
1110 }
1111 env->CallNonvirtualVoidMethod(peer.get(),
1112 WellKnownClasses::java_lang_Thread,
1113 WellKnownClasses::java_lang_Thread_init,
1114 thread_group, thread_name.get(), thread_priority, thread_is_daemon);
1115 if (IsExceptionPending()) {
1116 return;
1117 }
1118
1119 Thread* self = this;
1120 DCHECK_EQ(self, Thread::Current());
1121 env->SetLongField(peer.get(),
1122 WellKnownClasses::java_lang_Thread_nativePeer,
1123 reinterpret_cast64<jlong>(self));
1124
1125 ScopedObjectAccess soa(self);
1126 StackHandleScope<1> hs(self);
1127 MutableHandle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName()));
1128 if (peer_thread_name == nullptr) {
1129 // The Thread constructor should have set the Thread.name to a
1130 // non-null value. However, because we can run without code
1131 // available (in the compiler, in tests), we manually assign the
1132 // fields the constructor should have set.
1133 if (runtime->IsActiveTransaction()) {
1134 InitPeer<true>(soa,
1135 tlsPtr_.opeer,
1136 thread_is_daemon,
1137 thread_group,
1138 thread_name.get(),
1139 thread_priority);
1140 } else {
1141 InitPeer<false>(soa,
1142 tlsPtr_.opeer,
1143 thread_is_daemon,
1144 thread_group,
1145 thread_name.get(),
1146 thread_priority);
1147 }
1148 peer_thread_name.Assign(GetThreadName());
1149 }
1150 // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
1151 if (peer_thread_name != nullptr) {
1152 SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
1153 }
1154 }
1155
CreateCompileTimePeer(JNIEnv * env,const char * name,bool as_daemon,jobject thread_group)1156 jobject Thread::CreateCompileTimePeer(JNIEnv* env,
1157 const char* name,
1158 bool as_daemon,
1159 jobject thread_group) {
1160 Runtime* runtime = Runtime::Current();
1161 CHECK(!runtime->IsStarted());
1162
1163 if (thread_group == nullptr) {
1164 thread_group = runtime->GetMainThreadGroup();
1165 }
1166 ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
1167 // Add missing null check in case of OOM b/18297817
1168 if (name != nullptr && thread_name.get() == nullptr) {
1169 CHECK(Thread::Current()->IsExceptionPending());
1170 return nullptr;
1171 }
1172 jint thread_priority = kNormThreadPriority; // Always normalize to NORM priority.
1173 jboolean thread_is_daemon = as_daemon;
1174
1175 ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
1176 if (peer.get() == nullptr) {
1177 CHECK(Thread::Current()->IsExceptionPending());
1178 return nullptr;
1179 }
1180
1181 // We cannot call Thread.init, as it will recursively ask for currentThread.
1182
1183 // The Thread constructor should have set the Thread.name to a
1184 // non-null value. However, because we can run without code
1185 // available (in the compiler, in tests), we manually assign the
1186 // fields the constructor should have set.
1187 ScopedObjectAccessUnchecked soa(Thread::Current());
1188 if (runtime->IsActiveTransaction()) {
1189 InitPeer<true>(soa,
1190 soa.Decode<mirror::Object>(peer.get()),
1191 thread_is_daemon,
1192 thread_group,
1193 thread_name.get(),
1194 thread_priority);
1195 } else {
1196 InitPeer<false>(soa,
1197 soa.Decode<mirror::Object>(peer.get()),
1198 thread_is_daemon,
1199 thread_group,
1200 thread_name.get(),
1201 thread_priority);
1202 }
1203
1204 return peer.release();
1205 }
1206
1207 template<bool kTransactionActive>
InitPeer(ScopedObjectAccessAlreadyRunnable & soa,ObjPtr<mirror::Object> peer,jboolean thread_is_daemon,jobject thread_group,jobject thread_name,jint thread_priority)1208 void Thread::InitPeer(ScopedObjectAccessAlreadyRunnable& soa,
1209 ObjPtr<mirror::Object> peer,
1210 jboolean thread_is_daemon,
1211 jobject thread_group,
1212 jobject thread_name,
1213 jint thread_priority) {
1214 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_daemon)->
1215 SetBoolean<kTransactionActive>(peer, thread_is_daemon);
1216 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)->
1217 SetObject<kTransactionActive>(peer, soa.Decode<mirror::Object>(thread_group));
1218 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name)->
1219 SetObject<kTransactionActive>(peer, soa.Decode<mirror::Object>(thread_name));
1220 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority)->
1221 SetInt<kTransactionActive>(peer, thread_priority);
1222 }
1223
SetThreadName(const char * name)1224 void Thread::SetThreadName(const char* name) {
1225 tlsPtr_.name->assign(name);
1226 ::art::SetThreadName(name);
1227 Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
1228 }
1229
GetThreadStack(pthread_t thread,void ** stack_base,size_t * stack_size,size_t * guard_size)1230 static void GetThreadStack(pthread_t thread,
1231 void** stack_base,
1232 size_t* stack_size,
1233 size_t* guard_size) {
1234 #if defined(__APPLE__)
1235 *stack_size = pthread_get_stacksize_np(thread);
1236 void* stack_addr = pthread_get_stackaddr_np(thread);
1237
1238 // Check whether stack_addr is the base or end of the stack.
1239 // (On Mac OS 10.7, it's the end.)
1240 int stack_variable;
1241 if (stack_addr > &stack_variable) {
1242 *stack_base = reinterpret_cast<uint8_t*>(stack_addr) - *stack_size;
1243 } else {
1244 *stack_base = stack_addr;
1245 }
1246
1247 // This is wrong, but there doesn't seem to be a way to get the actual value on the Mac.
1248 pthread_attr_t attributes;
1249 CHECK_PTHREAD_CALL(pthread_attr_init, (&attributes), __FUNCTION__);
1250 CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
1251 CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
1252 #else
1253 pthread_attr_t attributes;
1254 CHECK_PTHREAD_CALL(pthread_getattr_np, (thread, &attributes), __FUNCTION__);
1255 CHECK_PTHREAD_CALL(pthread_attr_getstack, (&attributes, stack_base, stack_size), __FUNCTION__);
1256 CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
1257 CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
1258
1259 #if defined(__GLIBC__)
1260 // If we're the main thread, check whether we were run with an unlimited stack. In that case,
1261 // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
1262 // will be broken because we'll die long before we get close to 2GB.
1263 bool is_main_thread = (::art::GetTid() == getpid());
1264 if (is_main_thread) {
1265 rlimit stack_limit;
1266 if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
1267 PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
1268 }
1269 if (stack_limit.rlim_cur == RLIM_INFINITY) {
1270 size_t old_stack_size = *stack_size;
1271
1272 // Use the kernel default limit as our size, and adjust the base to match.
1273 *stack_size = 8 * MB;
1274 *stack_base = reinterpret_cast<uint8_t*>(*stack_base) + (old_stack_size - *stack_size);
1275
1276 VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
1277 << " to " << PrettySize(*stack_size)
1278 << " with base " << *stack_base;
1279 }
1280 }
1281 #endif
1282
1283 #endif
1284 }
1285
InitStackHwm()1286 bool Thread::InitStackHwm() {
1287 ScopedTrace trace("InitStackHwm");
1288 void* read_stack_base;
1289 size_t read_stack_size;
1290 size_t read_guard_size;
1291 GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size, &read_guard_size);
1292
1293 tlsPtr_.stack_begin = reinterpret_cast<uint8_t*>(read_stack_base);
1294 tlsPtr_.stack_size = read_stack_size;
1295
1296 // The minimum stack size we can cope with is the overflow reserved bytes (typically
1297 // 8K) + the protected region size (4K) + another page (4K). Typically this will
1298 // be 8+4+4 = 16K. The thread won't be able to do much with this stack even the GC takes
1299 // between 8K and 12K.
1300 uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize
1301 + 4 * KB;
1302 if (read_stack_size <= min_stack) {
1303 // Note, as we know the stack is small, avoid operations that could use a lot of stack.
1304 LogHelper::LogLineLowStack(__PRETTY_FUNCTION__,
1305 __LINE__,
1306 ::android::base::ERROR,
1307 "Attempt to attach a thread with a too-small stack");
1308 return false;
1309 }
1310
1311 // This is included in the SIGQUIT output, but it's useful here for thread debugging.
1312 VLOG(threads) << StringPrintf("Native stack is at %p (%s with %s guard)",
1313 read_stack_base,
1314 PrettySize(read_stack_size).c_str(),
1315 PrettySize(read_guard_size).c_str());
1316
1317 // Set stack_end_ to the bottom of the stack saving space of stack overflows
1318
1319 Runtime* runtime = Runtime::Current();
1320 bool implicit_stack_check = !runtime->ExplicitStackOverflowChecks() && !runtime->IsAotCompiler();
1321
1322 ResetDefaultStackEnd();
1323
1324 // Install the protected region if we are doing implicit overflow checks.
1325 if (implicit_stack_check) {
1326 // The thread might have protected region at the bottom. We need
1327 // to install our own region so we need to move the limits
1328 // of the stack to make room for it.
1329
1330 tlsPtr_.stack_begin += read_guard_size + kStackOverflowProtectedSize;
1331 tlsPtr_.stack_end += read_guard_size + kStackOverflowProtectedSize;
1332 tlsPtr_.stack_size -= read_guard_size;
1333
1334 InstallImplicitProtection();
1335 }
1336
1337 // Consistency check.
1338 CHECK_GT(FindStackTop(), reinterpret_cast<void*>(tlsPtr_.stack_end));
1339
1340 return true;
1341 }
1342
ShortDump(std::ostream & os) const1343 void Thread::ShortDump(std::ostream& os) const {
1344 os << "Thread[";
1345 if (GetThreadId() != 0) {
1346 // If we're in kStarting, we won't have a thin lock id or tid yet.
1347 os << GetThreadId()
1348 << ",tid=" << GetTid() << ',';
1349 }
1350 os << GetState()
1351 << ",Thread*=" << this
1352 << ",peer=" << tlsPtr_.opeer
1353 << ",\"" << (tlsPtr_.name != nullptr ? *tlsPtr_.name : "null") << "\""
1354 << "]";
1355 }
1356
Dump(std::ostream & os,bool dump_native_stack,BacktraceMap * backtrace_map,bool force_dump_stack) const1357 void Thread::Dump(std::ostream& os, bool dump_native_stack, BacktraceMap* backtrace_map,
1358 bool force_dump_stack) const {
1359 DumpState(os);
1360 DumpStack(os, dump_native_stack, backtrace_map, force_dump_stack);
1361 }
1362
GetThreadName() const1363 ObjPtr<mirror::String> Thread::GetThreadName() const {
1364 ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name);
1365 if (tlsPtr_.opeer == nullptr) {
1366 return nullptr;
1367 }
1368 ObjPtr<mirror::Object> name = f->GetObject(tlsPtr_.opeer);
1369 return name == nullptr ? nullptr : name->AsString();
1370 }
1371
GetThreadName(std::string & name) const1372 void Thread::GetThreadName(std::string& name) const {
1373 name.assign(*tlsPtr_.name);
1374 }
1375
GetCpuMicroTime() const1376 uint64_t Thread::GetCpuMicroTime() const {
1377 #if defined(__linux__)
1378 clockid_t cpu_clock_id;
1379 pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
1380 timespec now;
1381 clock_gettime(cpu_clock_id, &now);
1382 return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
1383 #else // __APPLE__
1384 UNIMPLEMENTED(WARNING);
1385 return -1;
1386 #endif
1387 }
1388
1389 // Attempt to rectify locks so that we dump thread list with required locks before exiting.
UnsafeLogFatalForSuspendCount(Thread * self,Thread * thread)1390 static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
1391 LOG(ERROR) << *thread << " suspend count already zero.";
1392 Locks::thread_suspend_count_lock_->Unlock(self);
1393 if (!Locks::mutator_lock_->IsSharedHeld(self)) {
1394 Locks::mutator_lock_->SharedTryLock(self);
1395 if (!Locks::mutator_lock_->IsSharedHeld(self)) {
1396 LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
1397 }
1398 }
1399 if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
1400 Locks::thread_list_lock_->TryLock(self);
1401 if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
1402 LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
1403 }
1404 }
1405 std::ostringstream ss;
1406 Runtime::Current()->GetThreadList()->Dump(ss);
1407 LOG(FATAL) << ss.str();
1408 }
1409
ModifySuspendCountInternal(Thread * self,int delta,AtomicInteger * suspend_barrier,SuspendReason reason)1410 bool Thread::ModifySuspendCountInternal(Thread* self,
1411 int delta,
1412 AtomicInteger* suspend_barrier,
1413 SuspendReason reason) {
1414 if (kIsDebugBuild) {
1415 DCHECK(delta == -1 || delta == +1)
1416 << reason << " " << delta << " " << this;
1417 Locks::thread_suspend_count_lock_->AssertHeld(self);
1418 if (this != self && !IsSuspended()) {
1419 Locks::thread_list_lock_->AssertHeld(self);
1420 }
1421 }
1422 // User code suspensions need to be checked more closely since they originate from code outside of
1423 // the runtime's control.
1424 if (UNLIKELY(reason == SuspendReason::kForUserCode)) {
1425 Locks::user_code_suspension_lock_->AssertHeld(self);
1426 if (UNLIKELY(delta + tls32_.user_code_suspend_count < 0)) {
1427 LOG(ERROR) << "attempting to modify suspend count in an illegal way.";
1428 return false;
1429 }
1430 }
1431 if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) {
1432 UnsafeLogFatalForSuspendCount(self, this);
1433 return false;
1434 }
1435
1436 if (kUseReadBarrier && delta > 0 && this != self && tlsPtr_.flip_function != nullptr) {
1437 // Force retry of a suspend request if it's in the middle of a thread flip to avoid a
1438 // deadlock. b/31683379.
1439 return false;
1440 }
1441
1442 uint16_t flags = kSuspendRequest;
1443 if (delta > 0 && suspend_barrier != nullptr) {
1444 uint32_t available_barrier = kMaxSuspendBarriers;
1445 for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1446 if (tlsPtr_.active_suspend_barriers[i] == nullptr) {
1447 available_barrier = i;
1448 break;
1449 }
1450 }
1451 if (available_barrier == kMaxSuspendBarriers) {
1452 // No barrier spaces available, we can't add another.
1453 return false;
1454 }
1455 tlsPtr_.active_suspend_barriers[available_barrier] = suspend_barrier;
1456 flags |= kActiveSuspendBarrier;
1457 }
1458
1459 tls32_.suspend_count += delta;
1460 switch (reason) {
1461 case SuspendReason::kForUserCode:
1462 tls32_.user_code_suspend_count += delta;
1463 break;
1464 case SuspendReason::kInternal:
1465 break;
1466 }
1467
1468 if (tls32_.suspend_count == 0) {
1469 AtomicClearFlag(kSuspendRequest);
1470 } else {
1471 // Two bits might be set simultaneously.
1472 tls32_.state_and_flags.as_atomic_int.fetch_or(flags, std::memory_order_seq_cst);
1473 TriggerSuspend();
1474 }
1475 return true;
1476 }
1477
PassActiveSuspendBarriers(Thread * self)1478 bool Thread::PassActiveSuspendBarriers(Thread* self) {
1479 // Grab the suspend_count lock and copy the current set of
1480 // barriers. Then clear the list and the flag. The ModifySuspendCount
1481 // function requires the lock so we prevent a race between setting
1482 // the kActiveSuspendBarrier flag and clearing it.
1483 AtomicInteger* pass_barriers[kMaxSuspendBarriers];
1484 {
1485 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1486 if (!ReadFlag(kActiveSuspendBarrier)) {
1487 // quick exit test: the barriers have already been claimed - this is
1488 // possible as there may be a race to claim and it doesn't matter
1489 // who wins.
1490 // All of the callers of this function (except the SuspendAllInternal)
1491 // will first test the kActiveSuspendBarrier flag without lock. Here
1492 // double-check whether the barrier has been passed with the
1493 // suspend_count lock.
1494 return false;
1495 }
1496
1497 for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1498 pass_barriers[i] = tlsPtr_.active_suspend_barriers[i];
1499 tlsPtr_.active_suspend_barriers[i] = nullptr;
1500 }
1501 AtomicClearFlag(kActiveSuspendBarrier);
1502 }
1503
1504 uint32_t barrier_count = 0;
1505 for (uint32_t i = 0; i < kMaxSuspendBarriers; i++) {
1506 AtomicInteger* pending_threads = pass_barriers[i];
1507 if (pending_threads != nullptr) {
1508 bool done = false;
1509 do {
1510 int32_t cur_val = pending_threads->load(std::memory_order_relaxed);
1511 CHECK_GT(cur_val, 0) << "Unexpected value for PassActiveSuspendBarriers(): " << cur_val;
1512 // Reduce value by 1.
1513 done = pending_threads->CompareAndSetWeakRelaxed(cur_val, cur_val - 1);
1514 #if ART_USE_FUTEXES
1515 if (done && (cur_val - 1) == 0) { // Weak CAS may fail spuriously.
1516 futex(pending_threads->Address(), FUTEX_WAKE_PRIVATE, INT_MAX, nullptr, nullptr, 0);
1517 }
1518 #endif
1519 } while (!done);
1520 ++barrier_count;
1521 }
1522 }
1523 CHECK_GT(barrier_count, 0U);
1524 return true;
1525 }
1526
ClearSuspendBarrier(AtomicInteger * target)1527 void Thread::ClearSuspendBarrier(AtomicInteger* target) {
1528 CHECK(ReadFlag(kActiveSuspendBarrier));
1529 bool clear_flag = true;
1530 for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1531 AtomicInteger* ptr = tlsPtr_.active_suspend_barriers[i];
1532 if (ptr == target) {
1533 tlsPtr_.active_suspend_barriers[i] = nullptr;
1534 } else if (ptr != nullptr) {
1535 clear_flag = false;
1536 }
1537 }
1538 if (LIKELY(clear_flag)) {
1539 AtomicClearFlag(kActiveSuspendBarrier);
1540 }
1541 }
1542
RunCheckpointFunction()1543 void Thread::RunCheckpointFunction() {
1544 // Grab the suspend_count lock, get the next checkpoint and update all the checkpoint fields. If
1545 // there are no more checkpoints we will also clear the kCheckpointRequest flag.
1546 Closure* checkpoint;
1547 {
1548 MutexLock mu(this, *Locks::thread_suspend_count_lock_);
1549 checkpoint = tlsPtr_.checkpoint_function;
1550 if (!checkpoint_overflow_.empty()) {
1551 // Overflow list not empty, copy the first one out and continue.
1552 tlsPtr_.checkpoint_function = checkpoint_overflow_.front();
1553 checkpoint_overflow_.pop_front();
1554 } else {
1555 // No overflow checkpoints. Clear the kCheckpointRequest flag
1556 tlsPtr_.checkpoint_function = nullptr;
1557 AtomicClearFlag(kCheckpointRequest);
1558 }
1559 }
1560 // Outside the lock, run the checkpoint function.
1561 ScopedTrace trace("Run checkpoint function");
1562 CHECK(checkpoint != nullptr) << "Checkpoint flag set without pending checkpoint";
1563 checkpoint->Run(this);
1564 }
1565
RunEmptyCheckpoint()1566 void Thread::RunEmptyCheckpoint() {
1567 DCHECK_EQ(Thread::Current(), this);
1568 AtomicClearFlag(kEmptyCheckpointRequest);
1569 Runtime::Current()->GetThreadList()->EmptyCheckpointBarrier()->Pass(this);
1570 }
1571
RequestCheckpoint(Closure * function)1572 bool Thread::RequestCheckpoint(Closure* function) {
1573 union StateAndFlags old_state_and_flags;
1574 old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
1575 if (old_state_and_flags.as_struct.state != kRunnable) {
1576 return false; // Fail, thread is suspended and so can't run a checkpoint.
1577 }
1578
1579 // We must be runnable to request a checkpoint.
1580 DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
1581 union StateAndFlags new_state_and_flags;
1582 new_state_and_flags.as_int = old_state_and_flags.as_int;
1583 new_state_and_flags.as_struct.flags |= kCheckpointRequest;
1584 bool success = tls32_.state_and_flags.as_atomic_int.CompareAndSetStrongSequentiallyConsistent(
1585 old_state_and_flags.as_int, new_state_and_flags.as_int);
1586 if (success) {
1587 // Succeeded setting checkpoint flag, now insert the actual checkpoint.
1588 if (tlsPtr_.checkpoint_function == nullptr) {
1589 tlsPtr_.checkpoint_function = function;
1590 } else {
1591 checkpoint_overflow_.push_back(function);
1592 }
1593 CHECK_EQ(ReadFlag(kCheckpointRequest), true);
1594 TriggerSuspend();
1595 }
1596 return success;
1597 }
1598
RequestEmptyCheckpoint()1599 bool Thread::RequestEmptyCheckpoint() {
1600 union StateAndFlags old_state_and_flags;
1601 old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
1602 if (old_state_and_flags.as_struct.state != kRunnable) {
1603 // If it's not runnable, we don't need to do anything because it won't be in the middle of a
1604 // heap access (eg. the read barrier).
1605 return false;
1606 }
1607
1608 // We must be runnable to request a checkpoint.
1609 DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
1610 union StateAndFlags new_state_and_flags;
1611 new_state_and_flags.as_int = old_state_and_flags.as_int;
1612 new_state_and_flags.as_struct.flags |= kEmptyCheckpointRequest;
1613 bool success = tls32_.state_and_flags.as_atomic_int.CompareAndSetStrongSequentiallyConsistent(
1614 old_state_and_flags.as_int, new_state_and_flags.as_int);
1615 if (success) {
1616 TriggerSuspend();
1617 }
1618 return success;
1619 }
1620
1621 class BarrierClosure : public Closure {
1622 public:
BarrierClosure(Closure * wrapped)1623 explicit BarrierClosure(Closure* wrapped) : wrapped_(wrapped), barrier_(0) {}
1624
Run(Thread * self)1625 void Run(Thread* self) override {
1626 wrapped_->Run(self);
1627 barrier_.Pass(self);
1628 }
1629
Wait(Thread * self,ThreadState suspend_state)1630 void Wait(Thread* self, ThreadState suspend_state) {
1631 if (suspend_state != ThreadState::kRunnable) {
1632 barrier_.Increment<Barrier::kDisallowHoldingLocks>(self, 1);
1633 } else {
1634 barrier_.Increment<Barrier::kAllowHoldingLocks>(self, 1);
1635 }
1636 }
1637
1638 private:
1639 Closure* wrapped_;
1640 Barrier barrier_;
1641 };
1642
1643 // RequestSynchronousCheckpoint releases the thread_list_lock_ as a part of its execution.
RequestSynchronousCheckpoint(Closure * function,ThreadState suspend_state)1644 bool Thread::RequestSynchronousCheckpoint(Closure* function, ThreadState suspend_state) {
1645 Thread* self = Thread::Current();
1646 if (this == Thread::Current()) {
1647 Locks::thread_list_lock_->AssertExclusiveHeld(self);
1648 // Unlock the tll before running so that the state is the same regardless of thread.
1649 Locks::thread_list_lock_->ExclusiveUnlock(self);
1650 // Asked to run on this thread. Just run.
1651 function->Run(this);
1652 return true;
1653 }
1654
1655 // The current thread is not this thread.
1656
1657 if (GetState() == ThreadState::kTerminated) {
1658 Locks::thread_list_lock_->ExclusiveUnlock(self);
1659 return false;
1660 }
1661
1662 struct ScopedThreadListLockUnlock {
1663 explicit ScopedThreadListLockUnlock(Thread* self_in) RELEASE(*Locks::thread_list_lock_)
1664 : self_thread(self_in) {
1665 Locks::thread_list_lock_->AssertHeld(self_thread);
1666 Locks::thread_list_lock_->Unlock(self_thread);
1667 }
1668
1669 ~ScopedThreadListLockUnlock() ACQUIRE(*Locks::thread_list_lock_) {
1670 Locks::thread_list_lock_->AssertNotHeld(self_thread);
1671 Locks::thread_list_lock_->Lock(self_thread);
1672 }
1673
1674 Thread* self_thread;
1675 };
1676
1677 for (;;) {
1678 Locks::thread_list_lock_->AssertExclusiveHeld(self);
1679 // If this thread is runnable, try to schedule a checkpoint. Do some gymnastics to not hold the
1680 // suspend-count lock for too long.
1681 if (GetState() == ThreadState::kRunnable) {
1682 BarrierClosure barrier_closure(function);
1683 bool installed = false;
1684 {
1685 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1686 installed = RequestCheckpoint(&barrier_closure);
1687 }
1688 if (installed) {
1689 // Relinquish the thread-list lock. We should not wait holding any locks. We cannot
1690 // reacquire it since we don't know if 'this' hasn't been deleted yet.
1691 Locks::thread_list_lock_->ExclusiveUnlock(self);
1692 ScopedThreadStateChange sts(self, suspend_state);
1693 barrier_closure.Wait(self, suspend_state);
1694 return true;
1695 }
1696 // Fall-through.
1697 }
1698
1699 // This thread is not runnable, make sure we stay suspended, then run the checkpoint.
1700 // Note: ModifySuspendCountInternal also expects the thread_list_lock to be held in
1701 // certain situations.
1702 {
1703 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1704
1705 if (!ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal)) {
1706 // Just retry the loop.
1707 sched_yield();
1708 continue;
1709 }
1710 }
1711
1712 {
1713 // Release for the wait. The suspension will keep us from being deleted. Reacquire after so
1714 // that we can call ModifySuspendCount without racing against ThreadList::Unregister.
1715 ScopedThreadListLockUnlock stllu(self);
1716 {
1717 ScopedThreadStateChange sts(self, suspend_state);
1718 while (GetState() == ThreadState::kRunnable) {
1719 // We became runnable again. Wait till the suspend triggered in ModifySuspendCount
1720 // moves us to suspended.
1721 sched_yield();
1722 }
1723 }
1724
1725 function->Run(this);
1726 }
1727
1728 {
1729 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1730
1731 DCHECK_NE(GetState(), ThreadState::kRunnable);
1732 bool updated = ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
1733 DCHECK(updated);
1734 }
1735
1736 {
1737 // Imitate ResumeAll, the thread may be waiting on Thread::resume_cond_ since we raised its
1738 // suspend count. Now the suspend_count_ is lowered so we must do the broadcast.
1739 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1740 Thread::resume_cond_->Broadcast(self);
1741 }
1742
1743 // Release the thread_list_lock_ to be consistent with the barrier-closure path.
1744 Locks::thread_list_lock_->ExclusiveUnlock(self);
1745
1746 return true; // We're done, break out of the loop.
1747 }
1748 }
1749
GetFlipFunction()1750 Closure* Thread::GetFlipFunction() {
1751 Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
1752 Closure* func;
1753 do {
1754 func = atomic_func->load(std::memory_order_relaxed);
1755 if (func == nullptr) {
1756 return nullptr;
1757 }
1758 } while (!atomic_func->CompareAndSetWeakSequentiallyConsistent(func, nullptr));
1759 DCHECK(func != nullptr);
1760 return func;
1761 }
1762
SetFlipFunction(Closure * function)1763 void Thread::SetFlipFunction(Closure* function) {
1764 CHECK(function != nullptr);
1765 Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
1766 atomic_func->store(function, std::memory_order_seq_cst);
1767 }
1768
FullSuspendCheck()1769 void Thread::FullSuspendCheck() {
1770 ScopedTrace trace(__FUNCTION__);
1771 VLOG(threads) << this << " self-suspending";
1772 // Make thread appear suspended to other threads, release mutator_lock_.
1773 // Transition to suspended and back to runnable, re-acquire share on mutator_lock_.
1774 ScopedThreadSuspension(this, kSuspended); // NOLINT
1775 VLOG(threads) << this << " self-reviving";
1776 }
1777
GetSchedulerGroupName(pid_t tid)1778 static std::string GetSchedulerGroupName(pid_t tid) {
1779 // /proc/<pid>/cgroup looks like this:
1780 // 2:devices:/
1781 // 1:cpuacct,cpu:/
1782 // We want the third field from the line whose second field contains the "cpu" token.
1783 std::string cgroup_file;
1784 if (!android::base::ReadFileToString(StringPrintf("/proc/self/task/%d/cgroup", tid),
1785 &cgroup_file)) {
1786 return "";
1787 }
1788 std::vector<std::string> cgroup_lines;
1789 Split(cgroup_file, '\n', &cgroup_lines);
1790 for (size_t i = 0; i < cgroup_lines.size(); ++i) {
1791 std::vector<std::string> cgroup_fields;
1792 Split(cgroup_lines[i], ':', &cgroup_fields);
1793 std::vector<std::string> cgroups;
1794 Split(cgroup_fields[1], ',', &cgroups);
1795 for (size_t j = 0; j < cgroups.size(); ++j) {
1796 if (cgroups[j] == "cpu") {
1797 return cgroup_fields[2].substr(1); // Skip the leading slash.
1798 }
1799 }
1800 }
1801 return "";
1802 }
1803
1804
DumpState(std::ostream & os,const Thread * thread,pid_t tid)1805 void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
1806 std::string group_name;
1807 int priority;
1808 bool is_daemon = false;
1809 Thread* self = Thread::Current();
1810
1811 // If flip_function is not null, it means we have run a checkpoint
1812 // before the thread wakes up to execute the flip function and the
1813 // thread roots haven't been forwarded. So the following access to
1814 // the roots (opeer or methods in the frames) would be bad. Run it
1815 // here. TODO: clean up.
1816 if (thread != nullptr) {
1817 ScopedObjectAccessUnchecked soa(self);
1818 Thread* this_thread = const_cast<Thread*>(thread);
1819 Closure* flip_func = this_thread->GetFlipFunction();
1820 if (flip_func != nullptr) {
1821 flip_func->Run(this_thread);
1822 }
1823 }
1824
1825 // Don't do this if we are aborting since the GC may have all the threads suspended. This will
1826 // cause ScopedObjectAccessUnchecked to deadlock.
1827 if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
1828 ScopedObjectAccessUnchecked soa(self);
1829 priority = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority)
1830 ->GetInt(thread->tlsPtr_.opeer);
1831 is_daemon = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_daemon)
1832 ->GetBoolean(thread->tlsPtr_.opeer);
1833
1834 ObjPtr<mirror::Object> thread_group =
1835 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)
1836 ->GetObject(thread->tlsPtr_.opeer);
1837
1838 if (thread_group != nullptr) {
1839 ArtField* group_name_field =
1840 jni::DecodeArtField(WellKnownClasses::java_lang_ThreadGroup_name);
1841 ObjPtr<mirror::String> group_name_string =
1842 group_name_field->GetObject(thread_group)->AsString();
1843 group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
1844 }
1845 } else if (thread != nullptr) {
1846 priority = thread->GetNativePriority();
1847 } else {
1848 PaletteStatus status = PaletteSchedGetPriority(tid, &priority);
1849 CHECK(status == PaletteStatus::kOkay || status == PaletteStatus::kCheckErrno);
1850 }
1851
1852 std::string scheduler_group_name(GetSchedulerGroupName(tid));
1853 if (scheduler_group_name.empty()) {
1854 scheduler_group_name = "default";
1855 }
1856
1857 if (thread != nullptr) {
1858 os << '"' << *thread->tlsPtr_.name << '"';
1859 if (is_daemon) {
1860 os << " daemon";
1861 }
1862 os << " prio=" << priority
1863 << " tid=" << thread->GetThreadId()
1864 << " " << thread->GetState();
1865 if (thread->IsStillStarting()) {
1866 os << " (still starting up)";
1867 }
1868 os << "\n";
1869 } else {
1870 os << '"' << ::art::GetThreadName(tid) << '"'
1871 << " prio=" << priority
1872 << " (not attached)\n";
1873 }
1874
1875 if (thread != nullptr) {
1876 auto suspend_log_fn = [&]() REQUIRES(Locks::thread_suspend_count_lock_) {
1877 os << " | group=\"" << group_name << "\""
1878 << " sCount=" << thread->tls32_.suspend_count
1879 << " ucsCount=" << thread->tls32_.user_code_suspend_count
1880 << " flags=" << thread->tls32_.state_and_flags.as_struct.flags
1881 << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
1882 << " self=" << reinterpret_cast<const void*>(thread) << "\n";
1883 };
1884 if (Locks::thread_suspend_count_lock_->IsExclusiveHeld(self)) {
1885 Locks::thread_suspend_count_lock_->AssertExclusiveHeld(self); // For annotalysis.
1886 suspend_log_fn();
1887 } else {
1888 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1889 suspend_log_fn();
1890 }
1891 }
1892
1893 os << " | sysTid=" << tid
1894 << " nice=" << getpriority(PRIO_PROCESS, tid)
1895 << " cgrp=" << scheduler_group_name;
1896 if (thread != nullptr) {
1897 int policy;
1898 sched_param sp;
1899 #if !defined(__APPLE__)
1900 // b/36445592 Don't use pthread_getschedparam since pthread may have exited.
1901 policy = sched_getscheduler(tid);
1902 if (policy == -1) {
1903 PLOG(WARNING) << "sched_getscheduler(" << tid << ")";
1904 }
1905 int sched_getparam_result = sched_getparam(tid, &sp);
1906 if (sched_getparam_result == -1) {
1907 PLOG(WARNING) << "sched_getparam(" << tid << ", &sp)";
1908 sp.sched_priority = -1;
1909 }
1910 #else
1911 CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
1912 __FUNCTION__);
1913 #endif
1914 os << " sched=" << policy << "/" << sp.sched_priority
1915 << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
1916 }
1917 os << "\n";
1918
1919 // Grab the scheduler stats for this thread.
1920 std::string scheduler_stats;
1921 if (android::base::ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid),
1922 &scheduler_stats)
1923 && !scheduler_stats.empty()) {
1924 scheduler_stats = android::base::Trim(scheduler_stats); // Lose the trailing '\n'.
1925 } else {
1926 scheduler_stats = "0 0 0";
1927 }
1928
1929 char native_thread_state = '?';
1930 int utime = 0;
1931 int stime = 0;
1932 int task_cpu = 0;
1933 GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
1934
1935 os << " | state=" << native_thread_state
1936 << " schedstat=( " << scheduler_stats << " )"
1937 << " utm=" << utime
1938 << " stm=" << stime
1939 << " core=" << task_cpu
1940 << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
1941 if (thread != nullptr) {
1942 os << " | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-"
1943 << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize="
1944 << PrettySize(thread->tlsPtr_.stack_size) << "\n";
1945 // Dump the held mutexes.
1946 os << " | held mutexes=";
1947 for (size_t i = 0; i < kLockLevelCount; ++i) {
1948 if (i != kMonitorLock) {
1949 BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i));
1950 if (mutex != nullptr) {
1951 os << " \"" << mutex->GetName() << "\"";
1952 if (mutex->IsReaderWriterMutex()) {
1953 ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex);
1954 if (rw_mutex->GetExclusiveOwnerTid() == tid) {
1955 os << "(exclusive held)";
1956 } else {
1957 os << "(shared held)";
1958 }
1959 }
1960 }
1961 }
1962 }
1963 os << "\n";
1964 }
1965 }
1966
DumpState(std::ostream & os) const1967 void Thread::DumpState(std::ostream& os) const {
1968 Thread::DumpState(os, this, GetTid());
1969 }
1970
1971 struct StackDumpVisitor : public MonitorObjectsStackVisitor {
StackDumpVisitorart::StackDumpVisitor1972 StackDumpVisitor(std::ostream& os_in,
1973 Thread* thread_in,
1974 Context* context,
1975 bool can_allocate,
1976 bool check_suspended = true,
1977 bool dump_locks = true)
1978 REQUIRES_SHARED(Locks::mutator_lock_)
1979 : MonitorObjectsStackVisitor(thread_in,
1980 context,
1981 check_suspended,
1982 can_allocate && dump_locks),
1983 os(os_in),
1984 last_method(nullptr),
1985 last_line_number(0),
1986 repetition_count(0) {}
1987
~StackDumpVisitorart::StackDumpVisitor1988 virtual ~StackDumpVisitor() {
1989 if (frame_count == 0) {
1990 os << " (no managed stack frames)\n";
1991 }
1992 }
1993
1994 static constexpr size_t kMaxRepetition = 3u;
1995
StartMethodart::StackDumpVisitor1996 VisitMethodResult StartMethod(ArtMethod* m, size_t frame_nr ATTRIBUTE_UNUSED)
1997 override
1998 REQUIRES_SHARED(Locks::mutator_lock_) {
1999 m = m->GetInterfaceMethodIfProxy(kRuntimePointerSize);
2000 ObjPtr<mirror::DexCache> dex_cache = m->GetDexCache();
2001 int line_number = -1;
2002 if (dex_cache != nullptr) { // be tolerant of bad input
2003 const DexFile* dex_file = dex_cache->GetDexFile();
2004 line_number = annotations::GetLineNumFromPC(dex_file, m, GetDexPc(false));
2005 }
2006 if (line_number == last_line_number && last_method == m) {
2007 ++repetition_count;
2008 } else {
2009 if (repetition_count >= kMaxRepetition) {
2010 os << " ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
2011 }
2012 repetition_count = 0;
2013 last_line_number = line_number;
2014 last_method = m;
2015 }
2016
2017 if (repetition_count >= kMaxRepetition) {
2018 // Skip visiting=printing anything.
2019 return VisitMethodResult::kSkipMethod;
2020 }
2021
2022 os << " at " << m->PrettyMethod(false);
2023 if (m->IsNative()) {
2024 os << "(Native method)";
2025 } else {
2026 const char* source_file(m->GetDeclaringClassSourceFile());
2027 os << "(" << (source_file != nullptr ? source_file : "unavailable")
2028 << ":" << line_number << ")";
2029 }
2030 os << "\n";
2031 // Go and visit locks.
2032 return VisitMethodResult::kContinueMethod;
2033 }
2034
EndMethodart::StackDumpVisitor2035 VisitMethodResult EndMethod(ArtMethod* m ATTRIBUTE_UNUSED) override {
2036 return VisitMethodResult::kContinueMethod;
2037 }
2038
VisitWaitingObjectart::StackDumpVisitor2039 void VisitWaitingObject(ObjPtr<mirror::Object> obj, ThreadState state ATTRIBUTE_UNUSED)
2040 override
2041 REQUIRES_SHARED(Locks::mutator_lock_) {
2042 PrintObject(obj, " - waiting on ", ThreadList::kInvalidThreadId);
2043 }
VisitSleepingObjectart::StackDumpVisitor2044 void VisitSleepingObject(ObjPtr<mirror::Object> obj)
2045 override
2046 REQUIRES_SHARED(Locks::mutator_lock_) {
2047 PrintObject(obj, " - sleeping on ", ThreadList::kInvalidThreadId);
2048 }
VisitBlockedOnObjectart::StackDumpVisitor2049 void VisitBlockedOnObject(ObjPtr<mirror::Object> obj,
2050 ThreadState state,
2051 uint32_t owner_tid)
2052 override
2053 REQUIRES_SHARED(Locks::mutator_lock_) {
2054 const char* msg;
2055 switch (state) {
2056 case kBlocked:
2057 msg = " - waiting to lock ";
2058 break;
2059
2060 case kWaitingForLockInflation:
2061 msg = " - waiting for lock inflation of ";
2062 break;
2063
2064 default:
2065 LOG(FATAL) << "Unreachable";
2066 UNREACHABLE();
2067 }
2068 PrintObject(obj, msg, owner_tid);
2069 }
VisitLockedObjectart::StackDumpVisitor2070 void VisitLockedObject(ObjPtr<mirror::Object> obj)
2071 override
2072 REQUIRES_SHARED(Locks::mutator_lock_) {
2073 PrintObject(obj, " - locked ", ThreadList::kInvalidThreadId);
2074 }
2075
PrintObjectart::StackDumpVisitor2076 void PrintObject(ObjPtr<mirror::Object> obj,
2077 const char* msg,
2078 uint32_t owner_tid) REQUIRES_SHARED(Locks::mutator_lock_) {
2079 if (obj == nullptr) {
2080 os << msg << "an unknown object";
2081 } else {
2082 if ((obj->GetLockWord(true).GetState() == LockWord::kThinLocked) &&
2083 Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
2084 // Getting the identity hashcode here would result in lock inflation and suspension of the
2085 // current thread, which isn't safe if this is the only runnable thread.
2086 os << msg << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)",
2087 reinterpret_cast<intptr_t>(obj.Ptr()),
2088 obj->PrettyTypeOf().c_str());
2089 } else {
2090 // - waiting on <0x6008c468> (a java.lang.Class<java.lang.ref.ReferenceQueue>)
2091 // Call PrettyTypeOf before IdentityHashCode since IdentityHashCode can cause thread
2092 // suspension and move pretty_object.
2093 const std::string pretty_type(obj->PrettyTypeOf());
2094 os << msg << StringPrintf("<0x%08x> (a %s)", obj->IdentityHashCode(), pretty_type.c_str());
2095 }
2096 }
2097 if (owner_tid != ThreadList::kInvalidThreadId) {
2098 os << " held by thread " << owner_tid;
2099 }
2100 os << "\n";
2101 }
2102
2103 std::ostream& os;
2104 ArtMethod* last_method;
2105 int last_line_number;
2106 size_t repetition_count;
2107 };
2108
ShouldShowNativeStack(const Thread * thread)2109 static bool ShouldShowNativeStack(const Thread* thread)
2110 REQUIRES_SHARED(Locks::mutator_lock_) {
2111 ThreadState state = thread->GetState();
2112
2113 // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
2114 if (state > kWaiting && state < kStarting) {
2115 return true;
2116 }
2117
2118 // In an Object.wait variant or Thread.sleep? That's not interesting.
2119 if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
2120 return false;
2121 }
2122
2123 // Threads with no managed stack frames should be shown.
2124 if (!thread->HasManagedStack()) {
2125 return true;
2126 }
2127
2128 // In some other native method? That's interesting.
2129 // We don't just check kNative because native methods will be in state kSuspended if they're
2130 // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
2131 // thread-startup states if it's early enough in their life cycle (http://b/7432159).
2132 ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
2133 return current_method != nullptr && current_method->IsNative();
2134 }
2135
DumpJavaStack(std::ostream & os,bool check_suspended,bool dump_locks) const2136 void Thread::DumpJavaStack(std::ostream& os, bool check_suspended, bool dump_locks) const {
2137 // If flip_function is not null, it means we have run a checkpoint
2138 // before the thread wakes up to execute the flip function and the
2139 // thread roots haven't been forwarded. So the following access to
2140 // the roots (locks or methods in the frames) would be bad. Run it
2141 // here. TODO: clean up.
2142 {
2143 Thread* this_thread = const_cast<Thread*>(this);
2144 Closure* flip_func = this_thread->GetFlipFunction();
2145 if (flip_func != nullptr) {
2146 flip_func->Run(this_thread);
2147 }
2148 }
2149
2150 // Dumping the Java stack involves the verifier for locks. The verifier operates under the
2151 // assumption that there is no exception pending on entry. Thus, stash any pending exception.
2152 // Thread::Current() instead of this in case a thread is dumping the stack of another suspended
2153 // thread.
2154 ScopedExceptionStorage ses(Thread::Current());
2155
2156 std::unique_ptr<Context> context(Context::Create());
2157 StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
2158 !tls32_.throwing_OutOfMemoryError, check_suspended, dump_locks);
2159 dumper.WalkStack();
2160 }
2161
DumpStack(std::ostream & os,bool dump_native_stack,BacktraceMap * backtrace_map,bool force_dump_stack) const2162 void Thread::DumpStack(std::ostream& os,
2163 bool dump_native_stack,
2164 BacktraceMap* backtrace_map,
2165 bool force_dump_stack) const {
2166 // TODO: we call this code when dying but may not have suspended the thread ourself. The
2167 // IsSuspended check is therefore racy with the use for dumping (normally we inhibit
2168 // the race with the thread_suspend_count_lock_).
2169 bool dump_for_abort = (gAborting > 0);
2170 bool safe_to_dump = (this == Thread::Current() || IsSuspended());
2171 if (!kIsDebugBuild) {
2172 // We always want to dump the stack for an abort, however, there is no point dumping another
2173 // thread's stack in debug builds where we'll hit the not suspended check in the stack walk.
2174 safe_to_dump = (safe_to_dump || dump_for_abort);
2175 }
2176 if (safe_to_dump || force_dump_stack) {
2177 // If we're currently in native code, dump that stack before dumping the managed stack.
2178 if (dump_native_stack && (dump_for_abort || force_dump_stack || ShouldShowNativeStack(this))) {
2179 ArtMethod* method =
2180 GetCurrentMethod(nullptr,
2181 /*check_suspended=*/ !force_dump_stack,
2182 /*abort_on_error=*/ !(dump_for_abort || force_dump_stack));
2183 DumpNativeStack(os, GetTid(), backtrace_map, " native: ", method);
2184 }
2185 DumpJavaStack(os,
2186 /*check_suspended=*/ !force_dump_stack,
2187 /*dump_locks=*/ !force_dump_stack);
2188 } else {
2189 os << "Not able to dump stack of thread that isn't suspended";
2190 }
2191 }
2192
ThreadExitCallback(void * arg)2193 void Thread::ThreadExitCallback(void* arg) {
2194 Thread* self = reinterpret_cast<Thread*>(arg);
2195 if (self->tls32_.thread_exit_check_count == 0) {
2196 LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
2197 "going to use a pthread_key_create destructor?): " << *self;
2198 CHECK(is_started_);
2199 #ifdef __BIONIC__
2200 __get_tls()[TLS_SLOT_ART_THREAD_SELF] = self;
2201 #else
2202 CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
2203 Thread::self_tls_ = self;
2204 #endif
2205 self->tls32_.thread_exit_check_count = 1;
2206 } else {
2207 LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
2208 }
2209 }
2210
Startup()2211 void Thread::Startup() {
2212 CHECK(!is_started_);
2213 is_started_ = true;
2214 {
2215 // MutexLock to keep annotalysis happy.
2216 //
2217 // Note we use null for the thread because Thread::Current can
2218 // return garbage since (is_started_ == true) and
2219 // Thread::pthread_key_self_ is not yet initialized.
2220 // This was seen on glibc.
2221 MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
2222 resume_cond_ = new ConditionVariable("Thread resumption condition variable",
2223 *Locks::thread_suspend_count_lock_);
2224 }
2225
2226 // Allocate a TLS slot.
2227 CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback),
2228 "self key");
2229
2230 // Double-check the TLS slot allocation.
2231 if (pthread_getspecific(pthread_key_self_) != nullptr) {
2232 LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
2233 }
2234 #ifndef __BIONIC__
2235 CHECK(Thread::self_tls_ == nullptr);
2236 #endif
2237 }
2238
FinishStartup()2239 void Thread::FinishStartup() {
2240 Runtime* runtime = Runtime::Current();
2241 CHECK(runtime->IsStarted());
2242
2243 // Finish attaching the main thread.
2244 ScopedObjectAccess soa(Thread::Current());
2245 soa.Self()->CreatePeer("main", false, runtime->GetMainThreadGroup());
2246 soa.Self()->AssertNoPendingException();
2247
2248 runtime->RunRootClinits(soa.Self());
2249
2250 // The thread counts as started from now on. We need to add it to the ThreadGroup. For regular
2251 // threads, this is done in Thread.start() on the Java side.
2252 soa.Self()->NotifyThreadGroup(soa, runtime->GetMainThreadGroup());
2253 soa.Self()->AssertNoPendingException();
2254 }
2255
Shutdown()2256 void Thread::Shutdown() {
2257 CHECK(is_started_);
2258 is_started_ = false;
2259 CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
2260 MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
2261 if (resume_cond_ != nullptr) {
2262 delete resume_cond_;
2263 resume_cond_ = nullptr;
2264 }
2265 }
2266
NotifyThreadGroup(ScopedObjectAccessAlreadyRunnable & soa,jobject thread_group)2267 void Thread::NotifyThreadGroup(ScopedObjectAccessAlreadyRunnable& soa, jobject thread_group) {
2268 ScopedLocalRef<jobject> thread_jobject(
2269 soa.Env(), soa.Env()->AddLocalReference<jobject>(Thread::Current()->GetPeer()));
2270 ScopedLocalRef<jobject> thread_group_jobject_scoped(
2271 soa.Env(), nullptr);
2272 jobject thread_group_jobject = thread_group;
2273 if (thread_group == nullptr || kIsDebugBuild) {
2274 // There is always a group set. Retrieve it.
2275 thread_group_jobject_scoped.reset(
2276 soa.Env()->GetObjectField(thread_jobject.get(),
2277 WellKnownClasses::java_lang_Thread_group));
2278 thread_group_jobject = thread_group_jobject_scoped.get();
2279 if (kIsDebugBuild && thread_group != nullptr) {
2280 CHECK(soa.Env()->IsSameObject(thread_group, thread_group_jobject));
2281 }
2282 }
2283 soa.Env()->CallNonvirtualVoidMethod(thread_group_jobject,
2284 WellKnownClasses::java_lang_ThreadGroup,
2285 WellKnownClasses::java_lang_ThreadGroup_add,
2286 thread_jobject.get());
2287 }
2288
Thread(bool daemon)2289 Thread::Thread(bool daemon)
2290 : tls32_(daemon),
2291 wait_monitor_(nullptr),
2292 is_runtime_thread_(false) {
2293 wait_mutex_ = new Mutex("a thread wait mutex", LockLevel::kThreadWaitLock);
2294 wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
2295 tlsPtr_.instrumentation_stack =
2296 new std::map<uintptr_t, instrumentation::InstrumentationStackFrame>;
2297 tlsPtr_.name = new std::string(kThreadNameDuringStartup);
2298
2299 static_assert((sizeof(Thread) % 4) == 0U,
2300 "art::Thread has a size which is not a multiple of 4.");
2301 tls32_.state_and_flags.as_struct.flags = 0;
2302 tls32_.state_and_flags.as_struct.state = kNative;
2303 tls32_.interrupted.store(false, std::memory_order_relaxed);
2304 // Initialize with no permit; if the java Thread was unparked before being
2305 // started, it will unpark itself before calling into java code.
2306 tls32_.park_state_.store(kNoPermit, std::memory_order_relaxed);
2307 memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
2308 std::fill(tlsPtr_.rosalloc_runs,
2309 tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBracketsInThread,
2310 gc::allocator::RosAlloc::GetDedicatedFullRun());
2311 tlsPtr_.checkpoint_function = nullptr;
2312 for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
2313 tlsPtr_.active_suspend_barriers[i] = nullptr;
2314 }
2315 tlsPtr_.flip_function = nullptr;
2316 tlsPtr_.thread_local_mark_stack = nullptr;
2317 tls32_.is_transitioning_to_runnable = false;
2318 tls32_.use_mterp = false;
2319 ResetTlab();
2320 }
2321
NotifyInTheadList()2322 void Thread::NotifyInTheadList() {
2323 tls32_.use_mterp = interpreter::CanUseMterp();
2324 }
2325
CanLoadClasses() const2326 bool Thread::CanLoadClasses() const {
2327 return !IsRuntimeThread() || !Runtime::Current()->IsJavaDebuggable();
2328 }
2329
IsStillStarting() const2330 bool Thread::IsStillStarting() const {
2331 // You might think you can check whether the state is kStarting, but for much of thread startup,
2332 // the thread is in kNative; it might also be in kVmWait.
2333 // You might think you can check whether the peer is null, but the peer is actually created and
2334 // assigned fairly early on, and needs to be.
2335 // It turns out that the last thing to change is the thread name; that's a good proxy for "has
2336 // this thread _ever_ entered kRunnable".
2337 return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
2338 (*tlsPtr_.name == kThreadNameDuringStartup);
2339 }
2340
AssertPendingException() const2341 void Thread::AssertPendingException() const {
2342 CHECK(IsExceptionPending()) << "Pending exception expected.";
2343 }
2344
AssertPendingOOMException() const2345 void Thread::AssertPendingOOMException() const {
2346 AssertPendingException();
2347 auto* e = GetException();
2348 CHECK_EQ(e->GetClass(), DecodeJObject(WellKnownClasses::java_lang_OutOfMemoryError)->AsClass())
2349 << e->Dump();
2350 }
2351
AssertNoPendingException() const2352 void Thread::AssertNoPendingException() const {
2353 if (UNLIKELY(IsExceptionPending())) {
2354 ScopedObjectAccess soa(Thread::Current());
2355 LOG(FATAL) << "No pending exception expected: " << GetException()->Dump();
2356 }
2357 }
2358
AssertNoPendingExceptionForNewException(const char * msg) const2359 void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
2360 if (UNLIKELY(IsExceptionPending())) {
2361 ScopedObjectAccess soa(Thread::Current());
2362 LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: "
2363 << GetException()->Dump();
2364 }
2365 }
2366
2367 class MonitorExitVisitor : public SingleRootVisitor {
2368 public:
MonitorExitVisitor(Thread * self)2369 explicit MonitorExitVisitor(Thread* self) : self_(self) { }
2370
2371 // NO_THREAD_SAFETY_ANALYSIS due to MonitorExit.
VisitRoot(mirror::Object * entered_monitor,const RootInfo & info ATTRIBUTE_UNUSED)2372 void VisitRoot(mirror::Object* entered_monitor, const RootInfo& info ATTRIBUTE_UNUSED)
2373 override NO_THREAD_SAFETY_ANALYSIS {
2374 if (self_->HoldsLock(entered_monitor)) {
2375 LOG(WARNING) << "Calling MonitorExit on object "
2376 << entered_monitor << " (" << entered_monitor->PrettyTypeOf() << ")"
2377 << " left locked by native thread "
2378 << *Thread::Current() << " which is detaching";
2379 entered_monitor->MonitorExit(self_);
2380 }
2381 }
2382
2383 private:
2384 Thread* const self_;
2385 };
2386
Destroy()2387 void Thread::Destroy() {
2388 Thread* self = this;
2389 DCHECK_EQ(self, Thread::Current());
2390
2391 if (tlsPtr_.jni_env != nullptr) {
2392 {
2393 ScopedObjectAccess soa(self);
2394 MonitorExitVisitor visitor(self);
2395 // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
2396 tlsPtr_.jni_env->monitors_.VisitRoots(&visitor, RootInfo(kRootVMInternal));
2397 }
2398 // Release locally held global references which releasing may require the mutator lock.
2399 if (tlsPtr_.jpeer != nullptr) {
2400 // If pthread_create fails we don't have a jni env here.
2401 tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
2402 tlsPtr_.jpeer = nullptr;
2403 }
2404 if (tlsPtr_.class_loader_override != nullptr) {
2405 tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.class_loader_override);
2406 tlsPtr_.class_loader_override = nullptr;
2407 }
2408 }
2409
2410 if (tlsPtr_.opeer != nullptr) {
2411 ScopedObjectAccess soa(self);
2412 // We may need to call user-supplied managed code, do this before final clean-up.
2413 HandleUncaughtExceptions(soa);
2414 RemoveFromThreadGroup(soa);
2415 Runtime* runtime = Runtime::Current();
2416 if (runtime != nullptr) {
2417 runtime->GetRuntimeCallbacks()->ThreadDeath(self);
2418 }
2419
2420 // this.nativePeer = 0;
2421 if (Runtime::Current()->IsActiveTransaction()) {
2422 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer)
2423 ->SetLong<true>(tlsPtr_.opeer, 0);
2424 } else {
2425 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer)
2426 ->SetLong<false>(tlsPtr_.opeer, 0);
2427 }
2428
2429 // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
2430 // who is waiting.
2431 ObjPtr<mirror::Object> lock =
2432 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer);
2433 // (This conditional is only needed for tests, where Thread.lock won't have been set.)
2434 if (lock != nullptr) {
2435 StackHandleScope<1> hs(self);
2436 Handle<mirror::Object> h_obj(hs.NewHandle(lock));
2437 ObjectLock<mirror::Object> locker(self, h_obj);
2438 locker.NotifyAll();
2439 }
2440 tlsPtr_.opeer = nullptr;
2441 }
2442
2443 {
2444 ScopedObjectAccess soa(self);
2445 Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
2446 }
2447 // Mark-stack revocation must be performed at the very end. No
2448 // checkpoint/flip-function or read-barrier should be called after this.
2449 if (kUseReadBarrier) {
2450 Runtime::Current()->GetHeap()->ConcurrentCopyingCollector()->RevokeThreadLocalMarkStack(this);
2451 }
2452 }
2453
~Thread()2454 Thread::~Thread() {
2455 CHECK(tlsPtr_.class_loader_override == nullptr);
2456 CHECK(tlsPtr_.jpeer == nullptr);
2457 CHECK(tlsPtr_.opeer == nullptr);
2458 bool initialized = (tlsPtr_.jni_env != nullptr); // Did Thread::Init run?
2459 if (initialized) {
2460 delete tlsPtr_.jni_env;
2461 tlsPtr_.jni_env = nullptr;
2462 }
2463 CHECK_NE(GetState(), kRunnable);
2464 CHECK(!ReadFlag(kCheckpointRequest));
2465 CHECK(!ReadFlag(kEmptyCheckpointRequest));
2466 CHECK(tlsPtr_.checkpoint_function == nullptr);
2467 CHECK_EQ(checkpoint_overflow_.size(), 0u);
2468 CHECK(tlsPtr_.flip_function == nullptr);
2469 CHECK_EQ(tls32_.is_transitioning_to_runnable, false);
2470
2471 // Make sure we processed all deoptimization requests.
2472 CHECK(tlsPtr_.deoptimization_context_stack == nullptr) << "Missed deoptimization";
2473 CHECK(tlsPtr_.frame_id_to_shadow_frame == nullptr) <<
2474 "Not all deoptimized frames have been consumed by the debugger.";
2475
2476 // We may be deleting a still born thread.
2477 SetStateUnsafe(kTerminated);
2478
2479 delete wait_cond_;
2480 delete wait_mutex_;
2481
2482 if (tlsPtr_.long_jump_context != nullptr) {
2483 delete tlsPtr_.long_jump_context;
2484 }
2485
2486 if (initialized) {
2487 CleanupCpu();
2488 }
2489
2490 delete tlsPtr_.instrumentation_stack;
2491 delete tlsPtr_.name;
2492 delete tlsPtr_.deps_or_stack_trace_sample.stack_trace_sample;
2493
2494 Runtime::Current()->GetHeap()->AssertThreadLocalBuffersAreRevoked(this);
2495
2496 TearDownAlternateSignalStack();
2497 }
2498
HandleUncaughtExceptions(ScopedObjectAccessAlreadyRunnable & soa)2499 void Thread::HandleUncaughtExceptions(ScopedObjectAccessAlreadyRunnable& soa) {
2500 if (!IsExceptionPending()) {
2501 return;
2502 }
2503 ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer));
2504 ScopedThreadStateChange tsc(this, kNative);
2505
2506 // Get and clear the exception.
2507 ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred());
2508 tlsPtr_.jni_env->ExceptionClear();
2509
2510 // Call the Thread instance's dispatchUncaughtException(Throwable)
2511 tlsPtr_.jni_env->CallVoidMethod(peer.get(),
2512 WellKnownClasses::java_lang_Thread_dispatchUncaughtException,
2513 exception.get());
2514
2515 // If the dispatchUncaughtException threw, clear that exception too.
2516 tlsPtr_.jni_env->ExceptionClear();
2517 }
2518
RemoveFromThreadGroup(ScopedObjectAccessAlreadyRunnable & soa)2519 void Thread::RemoveFromThreadGroup(ScopedObjectAccessAlreadyRunnable& soa) {
2520 // this.group.removeThread(this);
2521 // group can be null if we're in the compiler or a test.
2522 ObjPtr<mirror::Object> ogroup = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)
2523 ->GetObject(tlsPtr_.opeer);
2524 if (ogroup != nullptr) {
2525 ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
2526 ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer));
2527 ScopedThreadStateChange tsc(soa.Self(), kNative);
2528 tlsPtr_.jni_env->CallVoidMethod(group.get(),
2529 WellKnownClasses::java_lang_ThreadGroup_removeThread,
2530 peer.get());
2531 }
2532 }
2533
HandleScopeContains(jobject obj) const2534 bool Thread::HandleScopeContains(jobject obj) const {
2535 StackReference<mirror::Object>* hs_entry =
2536 reinterpret_cast<StackReference<mirror::Object>*>(obj);
2537 for (BaseHandleScope* cur = tlsPtr_.top_handle_scope; cur!= nullptr; cur = cur->GetLink()) {
2538 if (cur->Contains(hs_entry)) {
2539 return true;
2540 }
2541 }
2542 // JNI code invoked from portable code uses shadow frames rather than the handle scope.
2543 return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry);
2544 }
2545
HandleScopeVisitRoots(RootVisitor * visitor,pid_t thread_id)2546 void Thread::HandleScopeVisitRoots(RootVisitor* visitor, pid_t thread_id) {
2547 BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor(
2548 visitor, RootInfo(kRootNativeStack, thread_id));
2549 for (BaseHandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
2550 cur->VisitRoots(buffered_visitor);
2551 }
2552 }
2553
DecodeJObject(jobject obj) const2554 ObjPtr<mirror::Object> Thread::DecodeJObject(jobject obj) const {
2555 if (obj == nullptr) {
2556 return nullptr;
2557 }
2558 IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
2559 IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref);
2560 ObjPtr<mirror::Object> result;
2561 bool expect_null = false;
2562 // The "kinds" below are sorted by the frequency we expect to encounter them.
2563 if (kind == kLocal) {
2564 IndirectReferenceTable& locals = tlsPtr_.jni_env->locals_;
2565 // Local references do not need a read barrier.
2566 result = locals.Get<kWithoutReadBarrier>(ref);
2567 } else if (kind == kHandleScopeOrInvalid) {
2568 // TODO: make stack indirect reference table lookup more efficient.
2569 // Check if this is a local reference in the handle scope.
2570 if (LIKELY(HandleScopeContains(obj))) {
2571 // Read from handle scope.
2572 result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr();
2573 VerifyObject(result);
2574 } else {
2575 tlsPtr_.jni_env->vm_->JniAbortF(nullptr, "use of invalid jobject %p", obj);
2576 expect_null = true;
2577 result = nullptr;
2578 }
2579 } else if (kind == kGlobal) {
2580 result = tlsPtr_.jni_env->vm_->DecodeGlobal(ref);
2581 } else {
2582 DCHECK_EQ(kind, kWeakGlobal);
2583 result = tlsPtr_.jni_env->vm_->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
2584 if (Runtime::Current()->IsClearedJniWeakGlobal(result)) {
2585 // This is a special case where it's okay to return null.
2586 expect_null = true;
2587 result = nullptr;
2588 }
2589 }
2590
2591 if (UNLIKELY(!expect_null && result == nullptr)) {
2592 tlsPtr_.jni_env->vm_->JniAbortF(nullptr, "use of deleted %s %p",
2593 ToStr<IndirectRefKind>(kind).c_str(), obj);
2594 }
2595 return result;
2596 }
2597
IsJWeakCleared(jweak obj) const2598 bool Thread::IsJWeakCleared(jweak obj) const {
2599 CHECK(obj != nullptr);
2600 IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
2601 IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref);
2602 CHECK_EQ(kind, kWeakGlobal);
2603 return tlsPtr_.jni_env->vm_->IsWeakGlobalCleared(const_cast<Thread*>(this), ref);
2604 }
2605
2606 // Implements java.lang.Thread.interrupted.
Interrupted()2607 bool Thread::Interrupted() {
2608 DCHECK_EQ(Thread::Current(), this);
2609 // No other thread can concurrently reset the interrupted flag.
2610 bool interrupted = tls32_.interrupted.load(std::memory_order_seq_cst);
2611 if (interrupted) {
2612 tls32_.interrupted.store(false, std::memory_order_seq_cst);
2613 }
2614 return interrupted;
2615 }
2616
2617 // Implements java.lang.Thread.isInterrupted.
IsInterrupted()2618 bool Thread::IsInterrupted() {
2619 return tls32_.interrupted.load(std::memory_order_seq_cst);
2620 }
2621
Interrupt(Thread * self)2622 void Thread::Interrupt(Thread* self) {
2623 {
2624 MutexLock mu(self, *wait_mutex_);
2625 if (tls32_.interrupted.load(std::memory_order_seq_cst)) {
2626 return;
2627 }
2628 tls32_.interrupted.store(true, std::memory_order_seq_cst);
2629 NotifyLocked(self);
2630 }
2631 Unpark();
2632 }
2633
Notify()2634 void Thread::Notify() {
2635 Thread* self = Thread::Current();
2636 MutexLock mu(self, *wait_mutex_);
2637 NotifyLocked(self);
2638 }
2639
NotifyLocked(Thread * self)2640 void Thread::NotifyLocked(Thread* self) {
2641 if (wait_monitor_ != nullptr) {
2642 wait_cond_->Signal(self);
2643 }
2644 }
2645
SetClassLoaderOverride(jobject class_loader_override)2646 void Thread::SetClassLoaderOverride(jobject class_loader_override) {
2647 if (tlsPtr_.class_loader_override != nullptr) {
2648 GetJniEnv()->DeleteGlobalRef(tlsPtr_.class_loader_override);
2649 }
2650 tlsPtr_.class_loader_override = GetJniEnv()->NewGlobalRef(class_loader_override);
2651 }
2652
2653 using ArtMethodDexPcPair = std::pair<ArtMethod*, uint32_t>;
2654
2655 // Counts the stack trace depth and also fetches the first max_saved_frames frames.
2656 class FetchStackTraceVisitor : public StackVisitor {
2657 public:
FetchStackTraceVisitor(Thread * thread,ArtMethodDexPcPair * saved_frames=nullptr,size_t max_saved_frames=0)2658 explicit FetchStackTraceVisitor(Thread* thread,
2659 ArtMethodDexPcPair* saved_frames = nullptr,
2660 size_t max_saved_frames = 0)
2661 REQUIRES_SHARED(Locks::mutator_lock_)
2662 : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
2663 saved_frames_(saved_frames),
2664 max_saved_frames_(max_saved_frames) {}
2665
VisitFrame()2666 bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) {
2667 // We want to skip frames up to and including the exception's constructor.
2668 // Note we also skip the frame if it doesn't have a method (namely the callee
2669 // save frame)
2670 ArtMethod* m = GetMethod();
2671 if (skipping_ && !m->IsRuntimeMethod() &&
2672 !GetClassRoot<mirror::Throwable>()->IsAssignableFrom(m->GetDeclaringClass())) {
2673 skipping_ = false;
2674 }
2675 if (!skipping_) {
2676 if (!m->IsRuntimeMethod()) { // Ignore runtime frames (in particular callee save).
2677 if (depth_ < max_saved_frames_) {
2678 saved_frames_[depth_].first = m;
2679 saved_frames_[depth_].second = m->IsProxyMethod() ? dex::kDexNoIndex : GetDexPc();
2680 }
2681 ++depth_;
2682 }
2683 } else {
2684 ++skip_depth_;
2685 }
2686 return true;
2687 }
2688
GetDepth() const2689 uint32_t GetDepth() const {
2690 return depth_;
2691 }
2692
GetSkipDepth() const2693 uint32_t GetSkipDepth() const {
2694 return skip_depth_;
2695 }
2696
2697 private:
2698 uint32_t depth_ = 0;
2699 uint32_t skip_depth_ = 0;
2700 bool skipping_ = true;
2701 ArtMethodDexPcPair* saved_frames_;
2702 const size_t max_saved_frames_;
2703
2704 DISALLOW_COPY_AND_ASSIGN(FetchStackTraceVisitor);
2705 };
2706
2707 class BuildInternalStackTraceVisitor : public StackVisitor {
2708 public:
BuildInternalStackTraceVisitor(Thread * self,Thread * thread,int skip_depth)2709 BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
2710 : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
2711 self_(self),
2712 skip_depth_(skip_depth),
2713 pointer_size_(Runtime::Current()->GetClassLinker()->GetImagePointerSize()) {}
2714
Init(int depth)2715 bool Init(int depth) REQUIRES_SHARED(Locks::mutator_lock_) ACQUIRE(Roles::uninterruptible_) {
2716 // Allocate method trace as an object array where the first element is a pointer array that
2717 // contains the ArtMethod pointers and dex PCs. The rest of the elements are the declaring
2718 // class of the ArtMethod pointers.
2719 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2720 StackHandleScope<1> hs(self_);
2721 ObjPtr<mirror::Class> array_class =
2722 GetClassRoot<mirror::ObjectArray<mirror::Object>>(class_linker);
2723 // The first element is the methods and dex pc array, the other elements are declaring classes
2724 // for the methods to ensure classes in the stack trace don't get unloaded.
2725 Handle<mirror::ObjectArray<mirror::Object>> trace(
2726 hs.NewHandle(
2727 mirror::ObjectArray<mirror::Object>::Alloc(hs.Self(), array_class, depth + 1)));
2728 if (trace == nullptr) {
2729 // Acquire uninterruptible_ in all paths.
2730 self_->StartAssertNoThreadSuspension("Building internal stack trace");
2731 self_->AssertPendingOOMException();
2732 return false;
2733 }
2734 ObjPtr<mirror::PointerArray> methods_and_pcs =
2735 class_linker->AllocPointerArray(self_, depth * 2);
2736 const char* last_no_suspend_cause =
2737 self_->StartAssertNoThreadSuspension("Building internal stack trace");
2738 if (methods_and_pcs == nullptr) {
2739 self_->AssertPendingOOMException();
2740 return false;
2741 }
2742 trace->Set</*kTransactionActive=*/ false, /*kCheckTransaction=*/ false>(0, methods_and_pcs);
2743 trace_ = trace.Get();
2744 // If We are called from native, use non-transactional mode.
2745 CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
2746 return true;
2747 }
2748
RELEASE(Roles::uninterruptible_)2749 virtual ~BuildInternalStackTraceVisitor() RELEASE(Roles::uninterruptible_) {
2750 self_->EndAssertNoThreadSuspension(nullptr);
2751 }
2752
VisitFrame()2753 bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) {
2754 if (trace_ == nullptr) {
2755 return true; // We're probably trying to fillInStackTrace for an OutOfMemoryError.
2756 }
2757 if (skip_depth_ > 0) {
2758 skip_depth_--;
2759 return true;
2760 }
2761 ArtMethod* m = GetMethod();
2762 if (m->IsRuntimeMethod()) {
2763 return true; // Ignore runtime frames (in particular callee save).
2764 }
2765 AddFrame(m, m->IsProxyMethod() ? dex::kDexNoIndex : GetDexPc());
2766 return true;
2767 }
2768
AddFrame(ArtMethod * method,uint32_t dex_pc)2769 void AddFrame(ArtMethod* method, uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) {
2770 ObjPtr<mirror::PointerArray> methods_and_pcs = GetTraceMethodsAndPCs();
2771 methods_and_pcs->SetElementPtrSize</*kTransactionActive=*/ false, /*kCheckTransaction=*/ false>(
2772 count_, method, pointer_size_);
2773 methods_and_pcs->SetElementPtrSize</*kTransactionActive=*/ false, /*kCheckTransaction=*/ false>(
2774 methods_and_pcs->GetLength() / 2 + count_, dex_pc, pointer_size_);
2775 // Save the declaring class of the method to ensure that the declaring classes of the methods
2776 // do not get unloaded while the stack trace is live.
2777 trace_->Set</*kTransactionActive=*/ false, /*kCheckTransaction=*/ false>(
2778 count_ + 1, method->GetDeclaringClass());
2779 ++count_;
2780 }
2781
GetTraceMethodsAndPCs() const2782 ObjPtr<mirror::PointerArray> GetTraceMethodsAndPCs() const REQUIRES_SHARED(Locks::mutator_lock_) {
2783 return ObjPtr<mirror::PointerArray>::DownCast(trace_->Get(0));
2784 }
2785
GetInternalStackTrace() const2786 mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
2787 return trace_;
2788 }
2789
2790 private:
2791 Thread* const self_;
2792 // How many more frames to skip.
2793 int32_t skip_depth_;
2794 // Current position down stack trace.
2795 uint32_t count_ = 0;
2796 // An object array where the first element is a pointer array that contains the ArtMethod
2797 // pointers on the stack and dex PCs. The rest of the elements are the declaring class of
2798 // the ArtMethod pointers. trace_[i+1] contains the declaring class of the ArtMethod of the
2799 // i'th frame. We're initializing a newly allocated trace, so we do not need to record that
2800 // under a transaction. If the transaction is aborted, the whole trace shall be unreachable.
2801 mirror::ObjectArray<mirror::Object>* trace_ = nullptr;
2802 // For cross compilation.
2803 const PointerSize pointer_size_;
2804
2805 DISALLOW_COPY_AND_ASSIGN(BuildInternalStackTraceVisitor);
2806 };
2807
CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable & soa) const2808 jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
2809 // Compute depth of stack, save frames if possible to avoid needing to recompute many.
2810 constexpr size_t kMaxSavedFrames = 256;
2811 std::unique_ptr<ArtMethodDexPcPair[]> saved_frames(new ArtMethodDexPcPair[kMaxSavedFrames]);
2812 FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this),
2813 &saved_frames[0],
2814 kMaxSavedFrames);
2815 count_visitor.WalkStack();
2816 const uint32_t depth = count_visitor.GetDepth();
2817 const uint32_t skip_depth = count_visitor.GetSkipDepth();
2818
2819 // Build internal stack trace.
2820 BuildInternalStackTraceVisitor build_trace_visitor(
2821 soa.Self(), const_cast<Thread*>(this), skip_depth);
2822 if (!build_trace_visitor.Init(depth)) {
2823 return nullptr; // Allocation failed.
2824 }
2825 // If we saved all of the frames we don't even need to do the actual stack walk. This is faster
2826 // than doing the stack walk twice.
2827 if (depth < kMaxSavedFrames) {
2828 for (size_t i = 0; i < depth; ++i) {
2829 build_trace_visitor.AddFrame(saved_frames[i].first, saved_frames[i].second);
2830 }
2831 } else {
2832 build_trace_visitor.WalkStack();
2833 }
2834
2835 mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
2836 if (kIsDebugBuild) {
2837 ObjPtr<mirror::PointerArray> trace_methods = build_trace_visitor.GetTraceMethodsAndPCs();
2838 // Second half of trace_methods is dex PCs.
2839 for (uint32_t i = 0; i < static_cast<uint32_t>(trace_methods->GetLength() / 2); ++i) {
2840 auto* method = trace_methods->GetElementPtrSize<ArtMethod*>(
2841 i, Runtime::Current()->GetClassLinker()->GetImagePointerSize());
2842 CHECK(method != nullptr);
2843 }
2844 }
2845 return soa.AddLocalReference<jobject>(trace);
2846 }
2847
IsExceptionThrownByCurrentMethod(ObjPtr<mirror::Throwable> exception) const2848 bool Thread::IsExceptionThrownByCurrentMethod(ObjPtr<mirror::Throwable> exception) const {
2849 // Only count the depth since we do not pass a stack frame array as an argument.
2850 FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this));
2851 count_visitor.WalkStack();
2852 return count_visitor.GetDepth() == static_cast<uint32_t>(exception->GetStackDepth());
2853 }
2854
CreateStackTraceElement(const ScopedObjectAccessAlreadyRunnable & soa,ArtMethod * method,uint32_t dex_pc)2855 static ObjPtr<mirror::StackTraceElement> CreateStackTraceElement(
2856 const ScopedObjectAccessAlreadyRunnable& soa,
2857 ArtMethod* method,
2858 uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) {
2859 int32_t line_number;
2860 StackHandleScope<3> hs(soa.Self());
2861 auto class_name_object(hs.NewHandle<mirror::String>(nullptr));
2862 auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
2863 if (method->IsProxyMethod()) {
2864 line_number = -1;
2865 class_name_object.Assign(method->GetDeclaringClass()->GetName());
2866 // source_name_object intentionally left null for proxy methods
2867 } else {
2868 line_number = method->GetLineNumFromDexPC(dex_pc);
2869 // Allocate element, potentially triggering GC
2870 // TODO: reuse class_name_object via Class::name_?
2871 const char* descriptor = method->GetDeclaringClassDescriptor();
2872 CHECK(descriptor != nullptr);
2873 std::string class_name(PrettyDescriptor(descriptor));
2874 class_name_object.Assign(
2875 mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
2876 if (class_name_object == nullptr) {
2877 soa.Self()->AssertPendingOOMException();
2878 return nullptr;
2879 }
2880 const char* source_file = method->GetDeclaringClassSourceFile();
2881 if (line_number == -1) {
2882 // Make the line_number field of StackTraceElement hold the dex pc.
2883 // source_name_object is intentionally left null if we failed to map the dex pc to
2884 // a line number (most probably because there is no debug info). See b/30183883.
2885 line_number = dex_pc;
2886 } else {
2887 if (source_file != nullptr) {
2888 source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
2889 if (source_name_object == nullptr) {
2890 soa.Self()->AssertPendingOOMException();
2891 return nullptr;
2892 }
2893 }
2894 }
2895 }
2896 const char* method_name = method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetName();
2897 CHECK(method_name != nullptr);
2898 Handle<mirror::String> method_name_object(
2899 hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
2900 if (method_name_object == nullptr) {
2901 return nullptr;
2902 }
2903 return mirror::StackTraceElement::Alloc(soa.Self(),
2904 class_name_object,
2905 method_name_object,
2906 source_name_object,
2907 line_number);
2908 }
2909
InternalStackTraceToStackTraceElementArray(const ScopedObjectAccessAlreadyRunnable & soa,jobject internal,jobjectArray output_array,int * stack_depth)2910 jobjectArray Thread::InternalStackTraceToStackTraceElementArray(
2911 const ScopedObjectAccessAlreadyRunnable& soa,
2912 jobject internal,
2913 jobjectArray output_array,
2914 int* stack_depth) {
2915 // Decode the internal stack trace into the depth, method trace and PC trace.
2916 // Subtract one for the methods and PC trace.
2917 int32_t depth = soa.Decode<mirror::Array>(internal)->GetLength() - 1;
2918 DCHECK_GE(depth, 0);
2919
2920 ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
2921
2922 jobjectArray result;
2923
2924 if (output_array != nullptr) {
2925 // Reuse the array we were given.
2926 result = output_array;
2927 // ...adjusting the number of frames we'll write to not exceed the array length.
2928 const int32_t traces_length =
2929 soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->GetLength();
2930 depth = std::min(depth, traces_length);
2931 } else {
2932 // Create java_trace array and place in local reference table
2933 ObjPtr<mirror::ObjectArray<mirror::StackTraceElement>> java_traces =
2934 class_linker->AllocStackTraceElementArray(soa.Self(), depth);
2935 if (java_traces == nullptr) {
2936 return nullptr;
2937 }
2938 result = soa.AddLocalReference<jobjectArray>(java_traces);
2939 }
2940
2941 if (stack_depth != nullptr) {
2942 *stack_depth = depth;
2943 }
2944
2945 for (int32_t i = 0; i < depth; ++i) {
2946 ObjPtr<mirror::ObjectArray<mirror::Object>> decoded_traces =
2947 soa.Decode<mirror::Object>(internal)->AsObjectArray<mirror::Object>();
2948 // Methods and dex PC trace is element 0.
2949 DCHECK(decoded_traces->Get(0)->IsIntArray() || decoded_traces->Get(0)->IsLongArray());
2950 const ObjPtr<mirror::PointerArray> method_trace =
2951 ObjPtr<mirror::PointerArray>::DownCast(decoded_traces->Get(0));
2952 // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
2953 ArtMethod* method = method_trace->GetElementPtrSize<ArtMethod*>(i, kRuntimePointerSize);
2954 uint32_t dex_pc = method_trace->GetElementPtrSize<uint32_t>(
2955 i + method_trace->GetLength() / 2, kRuntimePointerSize);
2956 const ObjPtr<mirror::StackTraceElement> obj = CreateStackTraceElement(soa, method, dex_pc);
2957 if (obj == nullptr) {
2958 return nullptr;
2959 }
2960 // We are called from native: use non-transactional mode.
2961 soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->Set<false>(i, obj);
2962 }
2963 return result;
2964 }
2965
CreateAnnotatedStackTrace(const ScopedObjectAccessAlreadyRunnable & soa) const2966 jobjectArray Thread::CreateAnnotatedStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
2967 // This code allocates. Do not allow it to operate with a pending exception.
2968 if (IsExceptionPending()) {
2969 return nullptr;
2970 }
2971
2972 // If flip_function is not null, it means we have run a checkpoint
2973 // before the thread wakes up to execute the flip function and the
2974 // thread roots haven't been forwarded. So the following access to
2975 // the roots (locks or methods in the frames) would be bad. Run it
2976 // here. TODO: clean up.
2977 // Note: copied from DumpJavaStack.
2978 {
2979 Thread* this_thread = const_cast<Thread*>(this);
2980 Closure* flip_func = this_thread->GetFlipFunction();
2981 if (flip_func != nullptr) {
2982 flip_func->Run(this_thread);
2983 }
2984 }
2985
2986 class CollectFramesAndLocksStackVisitor : public MonitorObjectsStackVisitor {
2987 public:
2988 CollectFramesAndLocksStackVisitor(const ScopedObjectAccessAlreadyRunnable& soaa_in,
2989 Thread* self,
2990 Context* context)
2991 : MonitorObjectsStackVisitor(self, context),
2992 wait_jobject_(soaa_in.Env(), nullptr),
2993 block_jobject_(soaa_in.Env(), nullptr),
2994 soaa_(soaa_in) {}
2995
2996 protected:
2997 VisitMethodResult StartMethod(ArtMethod* m, size_t frame_nr ATTRIBUTE_UNUSED)
2998 override
2999 REQUIRES_SHARED(Locks::mutator_lock_) {
3000 ObjPtr<mirror::StackTraceElement> obj = CreateStackTraceElement(
3001 soaa_, m, GetDexPc(/* abort on error */ false));
3002 if (obj == nullptr) {
3003 return VisitMethodResult::kEndStackWalk;
3004 }
3005 stack_trace_elements_.emplace_back(soaa_.Env(), soaa_.AddLocalReference<jobject>(obj.Ptr()));
3006 return VisitMethodResult::kContinueMethod;
3007 }
3008
3009 VisitMethodResult EndMethod(ArtMethod* m ATTRIBUTE_UNUSED) override {
3010 lock_objects_.push_back({});
3011 lock_objects_[lock_objects_.size() - 1].swap(frame_lock_objects_);
3012
3013 DCHECK_EQ(lock_objects_.size(), stack_trace_elements_.size());
3014
3015 return VisitMethodResult::kContinueMethod;
3016 }
3017
3018 void VisitWaitingObject(ObjPtr<mirror::Object> obj, ThreadState state ATTRIBUTE_UNUSED)
3019 override
3020 REQUIRES_SHARED(Locks::mutator_lock_) {
3021 wait_jobject_.reset(soaa_.AddLocalReference<jobject>(obj));
3022 }
3023 void VisitSleepingObject(ObjPtr<mirror::Object> obj)
3024 override
3025 REQUIRES_SHARED(Locks::mutator_lock_) {
3026 wait_jobject_.reset(soaa_.AddLocalReference<jobject>(obj));
3027 }
3028 void VisitBlockedOnObject(ObjPtr<mirror::Object> obj,
3029 ThreadState state ATTRIBUTE_UNUSED,
3030 uint32_t owner_tid ATTRIBUTE_UNUSED)
3031 override
3032 REQUIRES_SHARED(Locks::mutator_lock_) {
3033 block_jobject_.reset(soaa_.AddLocalReference<jobject>(obj));
3034 }
3035 void VisitLockedObject(ObjPtr<mirror::Object> obj)
3036 override
3037 REQUIRES_SHARED(Locks::mutator_lock_) {
3038 frame_lock_objects_.emplace_back(soaa_.Env(), soaa_.AddLocalReference<jobject>(obj));
3039 }
3040
3041 public:
3042 std::vector<ScopedLocalRef<jobject>> stack_trace_elements_;
3043 ScopedLocalRef<jobject> wait_jobject_;
3044 ScopedLocalRef<jobject> block_jobject_;
3045 std::vector<std::vector<ScopedLocalRef<jobject>>> lock_objects_;
3046
3047 private:
3048 const ScopedObjectAccessAlreadyRunnable& soaa_;
3049
3050 std::vector<ScopedLocalRef<jobject>> frame_lock_objects_;
3051 };
3052
3053 std::unique_ptr<Context> context(Context::Create());
3054 CollectFramesAndLocksStackVisitor dumper(soa, const_cast<Thread*>(this), context.get());
3055 dumper.WalkStack();
3056
3057 // There should not be a pending exception. Otherwise, return with it pending.
3058 if (IsExceptionPending()) {
3059 return nullptr;
3060 }
3061
3062 // Now go and create Java arrays.
3063
3064 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3065
3066 StackHandleScope<6> hs(soa.Self());
3067 Handle<mirror::Class> h_aste_array_class = hs.NewHandle(class_linker->FindSystemClass(
3068 soa.Self(),
3069 "[Ldalvik/system/AnnotatedStackTraceElement;"));
3070 if (h_aste_array_class == nullptr) {
3071 return nullptr;
3072 }
3073 Handle<mirror::Class> h_aste_class = hs.NewHandle(h_aste_array_class->GetComponentType());
3074
3075 Handle<mirror::Class> h_o_array_class =
3076 hs.NewHandle(GetClassRoot<mirror::ObjectArray<mirror::Object>>(class_linker));
3077 DCHECK(h_o_array_class != nullptr); // Class roots must be already initialized.
3078
3079
3080 // Make sure the AnnotatedStackTraceElement.class is initialized, b/76208924 .
3081 class_linker->EnsureInitialized(soa.Self(),
3082 h_aste_class,
3083 /* can_init_fields= */ true,
3084 /* can_init_parents= */ true);
3085 if (soa.Self()->IsExceptionPending()) {
3086 // This should not fail in a healthy runtime.
3087 return nullptr;
3088 }
3089
3090 ArtField* stack_trace_element_field = h_aste_class->FindField(
3091 soa.Self(), h_aste_class.Get(), "stackTraceElement", "Ljava/lang/StackTraceElement;");
3092 DCHECK(stack_trace_element_field != nullptr);
3093 ArtField* held_locks_field = h_aste_class->FindField(
3094 soa.Self(), h_aste_class.Get(), "heldLocks", "[Ljava/lang/Object;");
3095 DCHECK(held_locks_field != nullptr);
3096 ArtField* blocked_on_field = h_aste_class->FindField(
3097 soa.Self(), h_aste_class.Get(), "blockedOn", "Ljava/lang/Object;");
3098 DCHECK(blocked_on_field != nullptr);
3099
3100 size_t length = dumper.stack_trace_elements_.size();
3101 ObjPtr<mirror::ObjectArray<mirror::Object>> array =
3102 mirror::ObjectArray<mirror::Object>::Alloc(soa.Self(), h_aste_array_class.Get(), length);
3103 if (array == nullptr) {
3104 soa.Self()->AssertPendingOOMException();
3105 return nullptr;
3106 }
3107
3108 ScopedLocalRef<jobjectArray> result(soa.Env(), soa.Env()->AddLocalReference<jobjectArray>(array));
3109
3110 MutableHandle<mirror::Object> handle(hs.NewHandle<mirror::Object>(nullptr));
3111 MutableHandle<mirror::ObjectArray<mirror::Object>> handle2(
3112 hs.NewHandle<mirror::ObjectArray<mirror::Object>>(nullptr));
3113 for (size_t i = 0; i != length; ++i) {
3114 handle.Assign(h_aste_class->AllocObject(soa.Self()));
3115 if (handle == nullptr) {
3116 soa.Self()->AssertPendingOOMException();
3117 return nullptr;
3118 }
3119
3120 // Set stack trace element.
3121 stack_trace_element_field->SetObject<false>(
3122 handle.Get(), soa.Decode<mirror::Object>(dumper.stack_trace_elements_[i].get()));
3123
3124 // Create locked-on array.
3125 if (!dumper.lock_objects_[i].empty()) {
3126 handle2.Assign(mirror::ObjectArray<mirror::Object>::Alloc(soa.Self(),
3127 h_o_array_class.Get(),
3128 dumper.lock_objects_[i].size()));
3129 if (handle2 == nullptr) {
3130 soa.Self()->AssertPendingOOMException();
3131 return nullptr;
3132 }
3133 int32_t j = 0;
3134 for (auto& scoped_local : dumper.lock_objects_[i]) {
3135 if (scoped_local == nullptr) {
3136 continue;
3137 }
3138 handle2->Set(j, soa.Decode<mirror::Object>(scoped_local.get()));
3139 DCHECK(!soa.Self()->IsExceptionPending());
3140 j++;
3141 }
3142 held_locks_field->SetObject<false>(handle.Get(), handle2.Get());
3143 }
3144
3145 // Set blocked-on object.
3146 if (i == 0) {
3147 if (dumper.block_jobject_ != nullptr) {
3148 blocked_on_field->SetObject<false>(
3149 handle.Get(), soa.Decode<mirror::Object>(dumper.block_jobject_.get()));
3150 }
3151 }
3152
3153 ScopedLocalRef<jobject> elem(soa.Env(), soa.AddLocalReference<jobject>(handle.Get()));
3154 soa.Env()->SetObjectArrayElement(result.get(), i, elem.get());
3155 DCHECK(!soa.Self()->IsExceptionPending());
3156 }
3157
3158 return result.release();
3159 }
3160
ThrowNewExceptionF(const char * exception_class_descriptor,const char * fmt,...)3161 void Thread::ThrowNewExceptionF(const char* exception_class_descriptor, const char* fmt, ...) {
3162 va_list args;
3163 va_start(args, fmt);
3164 ThrowNewExceptionV(exception_class_descriptor, fmt, args);
3165 va_end(args);
3166 }
3167
ThrowNewExceptionV(const char * exception_class_descriptor,const char * fmt,va_list ap)3168 void Thread::ThrowNewExceptionV(const char* exception_class_descriptor,
3169 const char* fmt, va_list ap) {
3170 std::string msg;
3171 StringAppendV(&msg, fmt, ap);
3172 ThrowNewException(exception_class_descriptor, msg.c_str());
3173 }
3174
ThrowNewException(const char * exception_class_descriptor,const char * msg)3175 void Thread::ThrowNewException(const char* exception_class_descriptor,
3176 const char* msg) {
3177 // Callers should either clear or call ThrowNewWrappedException.
3178 AssertNoPendingExceptionForNewException(msg);
3179 ThrowNewWrappedException(exception_class_descriptor, msg);
3180 }
3181
GetCurrentClassLoader(Thread * self)3182 static ObjPtr<mirror::ClassLoader> GetCurrentClassLoader(Thread* self)
3183 REQUIRES_SHARED(Locks::mutator_lock_) {
3184 ArtMethod* method = self->GetCurrentMethod(nullptr);
3185 return method != nullptr
3186 ? method->GetDeclaringClass()->GetClassLoader()
3187 : nullptr;
3188 }
3189
ThrowNewWrappedException(const char * exception_class_descriptor,const char * msg)3190 void Thread::ThrowNewWrappedException(const char* exception_class_descriptor,
3191 const char* msg) {
3192 DCHECK_EQ(this, Thread::Current());
3193 ScopedObjectAccessUnchecked soa(this);
3194 StackHandleScope<3> hs(soa.Self());
3195 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(GetCurrentClassLoader(soa.Self())));
3196 ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException()));
3197 ClearException();
3198 Runtime* runtime = Runtime::Current();
3199 auto* cl = runtime->GetClassLinker();
3200 Handle<mirror::Class> exception_class(
3201 hs.NewHandle(cl->FindClass(this, exception_class_descriptor, class_loader)));
3202 if (UNLIKELY(exception_class == nullptr)) {
3203 CHECK(IsExceptionPending());
3204 LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
3205 return;
3206 }
3207
3208 if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(soa.Self(), exception_class, true,
3209 true))) {
3210 DCHECK(IsExceptionPending());
3211 return;
3212 }
3213 DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
3214 Handle<mirror::Throwable> exception(
3215 hs.NewHandle(ObjPtr<mirror::Throwable>::DownCast(exception_class->AllocObject(this))));
3216
3217 // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
3218 if (exception == nullptr) {
3219 Dump(LOG_STREAM(WARNING)); // The pre-allocated OOME has no stack, so help out and log one.
3220 SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryErrorWhenThrowingException());
3221 return;
3222 }
3223
3224 // Choose an appropriate constructor and set up the arguments.
3225 const char* signature;
3226 ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
3227 if (msg != nullptr) {
3228 // Ensure we remember this and the method over the String allocation.
3229 msg_string.reset(
3230 soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
3231 if (UNLIKELY(msg_string.get() == nullptr)) {
3232 CHECK(IsExceptionPending()); // OOME.
3233 return;
3234 }
3235 if (cause.get() == nullptr) {
3236 signature = "(Ljava/lang/String;)V";
3237 } else {
3238 signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
3239 }
3240 } else {
3241 if (cause.get() == nullptr) {
3242 signature = "()V";
3243 } else {
3244 signature = "(Ljava/lang/Throwable;)V";
3245 }
3246 }
3247 ArtMethod* exception_init_method =
3248 exception_class->FindConstructor(signature, cl->GetImagePointerSize());
3249
3250 CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
3251 << PrettyDescriptor(exception_class_descriptor);
3252
3253 if (UNLIKELY(!runtime->IsStarted())) {
3254 // Something is trying to throw an exception without a started runtime, which is the common
3255 // case in the compiler. We won't be able to invoke the constructor of the exception, so set
3256 // the exception fields directly.
3257 if (msg != nullptr) {
3258 exception->SetDetailMessage(DecodeJObject(msg_string.get())->AsString());
3259 }
3260 if (cause.get() != nullptr) {
3261 exception->SetCause(DecodeJObject(cause.get())->AsThrowable());
3262 }
3263 ScopedLocalRef<jobject> trace(GetJniEnv(), CreateInternalStackTrace(soa));
3264 if (trace.get() != nullptr) {
3265 exception->SetStackState(DecodeJObject(trace.get()).Ptr());
3266 }
3267 SetException(exception.Get());
3268 } else {
3269 jvalue jv_args[2];
3270 size_t i = 0;
3271
3272 if (msg != nullptr) {
3273 jv_args[i].l = msg_string.get();
3274 ++i;
3275 }
3276 if (cause.get() != nullptr) {
3277 jv_args[i].l = cause.get();
3278 ++i;
3279 }
3280 ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(exception.Get()));
3281 InvokeWithJValues(soa, ref.get(), exception_init_method, jv_args);
3282 if (LIKELY(!IsExceptionPending())) {
3283 SetException(exception.Get());
3284 }
3285 }
3286 }
3287
ThrowOutOfMemoryError(const char * msg)3288 void Thread::ThrowOutOfMemoryError(const char* msg) {
3289 LOG(WARNING) << "Throwing OutOfMemoryError "
3290 << '"' << msg << '"'
3291 << " (VmSize " << GetProcessStatus("VmSize")
3292 << (tls32_.throwing_OutOfMemoryError ? ", recursive case)" : ")");
3293 if (!tls32_.throwing_OutOfMemoryError) {
3294 tls32_.throwing_OutOfMemoryError = true;
3295 ThrowNewException("Ljava/lang/OutOfMemoryError;", msg);
3296 tls32_.throwing_OutOfMemoryError = false;
3297 } else {
3298 Dump(LOG_STREAM(WARNING)); // The pre-allocated OOME has no stack, so help out and log one.
3299 SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryErrorWhenThrowingOOME());
3300 }
3301 }
3302
CurrentFromGdb()3303 Thread* Thread::CurrentFromGdb() {
3304 return Thread::Current();
3305 }
3306
DumpFromGdb() const3307 void Thread::DumpFromGdb() const {
3308 std::ostringstream ss;
3309 Dump(ss);
3310 std::string str(ss.str());
3311 // log to stderr for debugging command line processes
3312 std::cerr << str;
3313 #ifdef ART_TARGET_ANDROID
3314 // log to logcat for debugging frameworks processes
3315 LOG(INFO) << str;
3316 #endif
3317 }
3318
3319 // Explicitly instantiate 32 and 64bit thread offset dumping support.
3320 template
3321 void Thread::DumpThreadOffset<PointerSize::k32>(std::ostream& os, uint32_t offset);
3322 template
3323 void Thread::DumpThreadOffset<PointerSize::k64>(std::ostream& os, uint32_t offset);
3324
3325 template<PointerSize ptr_size>
DumpThreadOffset(std::ostream & os,uint32_t offset)3326 void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
3327 #define DO_THREAD_OFFSET(x, y) \
3328 if (offset == (x).Uint32Value()) { \
3329 os << (y); \
3330 return; \
3331 }
3332 DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
3333 DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
3334 DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
3335 DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
3336 DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
3337 DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
3338 DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
3339 DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
3340 DO_THREAD_OFFSET(IsGcMarkingOffset<ptr_size>(), "is_gc_marking")
3341 DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
3342 DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
3343 DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope")
3344 DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
3345 #undef DO_THREAD_OFFSET
3346
3347 #define JNI_ENTRY_POINT_INFO(x) \
3348 if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
3349 os << #x; \
3350 return; \
3351 }
3352 JNI_ENTRY_POINT_INFO(pDlsymLookup)
3353 JNI_ENTRY_POINT_INFO(pDlsymLookupCritical)
3354 #undef JNI_ENTRY_POINT_INFO
3355
3356 #define QUICK_ENTRY_POINT_INFO(x) \
3357 if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
3358 os << #x; \
3359 return; \
3360 }
3361 QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
3362 QUICK_ENTRY_POINT_INFO(pAllocArrayResolved8)
3363 QUICK_ENTRY_POINT_INFO(pAllocArrayResolved16)
3364 QUICK_ENTRY_POINT_INFO(pAllocArrayResolved32)
3365 QUICK_ENTRY_POINT_INFO(pAllocArrayResolved64)
3366 QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
3367 QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
3368 QUICK_ENTRY_POINT_INFO(pAllocObjectWithChecks)
3369 QUICK_ENTRY_POINT_INFO(pAllocStringObject)
3370 QUICK_ENTRY_POINT_INFO(pAllocStringFromBytes)
3371 QUICK_ENTRY_POINT_INFO(pAllocStringFromChars)
3372 QUICK_ENTRY_POINT_INFO(pAllocStringFromString)
3373 QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
3374 QUICK_ENTRY_POINT_INFO(pCheckInstanceOf)
3375 QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
3376 QUICK_ENTRY_POINT_INFO(pResolveTypeAndVerifyAccess)
3377 QUICK_ENTRY_POINT_INFO(pResolveType)
3378 QUICK_ENTRY_POINT_INFO(pResolveString)
3379 QUICK_ENTRY_POINT_INFO(pSet8Instance)
3380 QUICK_ENTRY_POINT_INFO(pSet8Static)
3381 QUICK_ENTRY_POINT_INFO(pSet16Instance)
3382 QUICK_ENTRY_POINT_INFO(pSet16Static)
3383 QUICK_ENTRY_POINT_INFO(pSet32Instance)
3384 QUICK_ENTRY_POINT_INFO(pSet32Static)
3385 QUICK_ENTRY_POINT_INFO(pSet64Instance)
3386 QUICK_ENTRY_POINT_INFO(pSet64Static)
3387 QUICK_ENTRY_POINT_INFO(pSetObjInstance)
3388 QUICK_ENTRY_POINT_INFO(pSetObjStatic)
3389 QUICK_ENTRY_POINT_INFO(pGetByteInstance)
3390 QUICK_ENTRY_POINT_INFO(pGetBooleanInstance)
3391 QUICK_ENTRY_POINT_INFO(pGetByteStatic)
3392 QUICK_ENTRY_POINT_INFO(pGetBooleanStatic)
3393 QUICK_ENTRY_POINT_INFO(pGetShortInstance)
3394 QUICK_ENTRY_POINT_INFO(pGetCharInstance)
3395 QUICK_ENTRY_POINT_INFO(pGetShortStatic)
3396 QUICK_ENTRY_POINT_INFO(pGetCharStatic)
3397 QUICK_ENTRY_POINT_INFO(pGet32Instance)
3398 QUICK_ENTRY_POINT_INFO(pGet32Static)
3399 QUICK_ENTRY_POINT_INFO(pGet64Instance)
3400 QUICK_ENTRY_POINT_INFO(pGet64Static)
3401 QUICK_ENTRY_POINT_INFO(pGetObjInstance)
3402 QUICK_ENTRY_POINT_INFO(pGetObjStatic)
3403 QUICK_ENTRY_POINT_INFO(pAputObject)
3404 QUICK_ENTRY_POINT_INFO(pJniMethodStart)
3405 QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized)
3406 QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
3407 QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized)
3408 QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference)
3409 QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized)
3410 QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
3411 QUICK_ENTRY_POINT_INFO(pLockObject)
3412 QUICK_ENTRY_POINT_INFO(pUnlockObject)
3413 QUICK_ENTRY_POINT_INFO(pCmpgDouble)
3414 QUICK_ENTRY_POINT_INFO(pCmpgFloat)
3415 QUICK_ENTRY_POINT_INFO(pCmplDouble)
3416 QUICK_ENTRY_POINT_INFO(pCmplFloat)
3417 QUICK_ENTRY_POINT_INFO(pCos)
3418 QUICK_ENTRY_POINT_INFO(pSin)
3419 QUICK_ENTRY_POINT_INFO(pAcos)
3420 QUICK_ENTRY_POINT_INFO(pAsin)
3421 QUICK_ENTRY_POINT_INFO(pAtan)
3422 QUICK_ENTRY_POINT_INFO(pAtan2)
3423 QUICK_ENTRY_POINT_INFO(pCbrt)
3424 QUICK_ENTRY_POINT_INFO(pCosh)
3425 QUICK_ENTRY_POINT_INFO(pExp)
3426 QUICK_ENTRY_POINT_INFO(pExpm1)
3427 QUICK_ENTRY_POINT_INFO(pHypot)
3428 QUICK_ENTRY_POINT_INFO(pLog)
3429 QUICK_ENTRY_POINT_INFO(pLog10)
3430 QUICK_ENTRY_POINT_INFO(pNextAfter)
3431 QUICK_ENTRY_POINT_INFO(pSinh)
3432 QUICK_ENTRY_POINT_INFO(pTan)
3433 QUICK_ENTRY_POINT_INFO(pTanh)
3434 QUICK_ENTRY_POINT_INFO(pFmod)
3435 QUICK_ENTRY_POINT_INFO(pL2d)
3436 QUICK_ENTRY_POINT_INFO(pFmodf)
3437 QUICK_ENTRY_POINT_INFO(pL2f)
3438 QUICK_ENTRY_POINT_INFO(pD2iz)
3439 QUICK_ENTRY_POINT_INFO(pF2iz)
3440 QUICK_ENTRY_POINT_INFO(pIdivmod)
3441 QUICK_ENTRY_POINT_INFO(pD2l)
3442 QUICK_ENTRY_POINT_INFO(pF2l)
3443 QUICK_ENTRY_POINT_INFO(pLdiv)
3444 QUICK_ENTRY_POINT_INFO(pLmod)
3445 QUICK_ENTRY_POINT_INFO(pLmul)
3446 QUICK_ENTRY_POINT_INFO(pShlLong)
3447 QUICK_ENTRY_POINT_INFO(pShrLong)
3448 QUICK_ENTRY_POINT_INFO(pUshrLong)
3449 QUICK_ENTRY_POINT_INFO(pIndexOf)
3450 QUICK_ENTRY_POINT_INFO(pStringCompareTo)
3451 QUICK_ENTRY_POINT_INFO(pMemcpy)
3452 QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
3453 QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
3454 QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
3455 QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
3456 QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
3457 QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
3458 QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
3459 QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
3460 QUICK_ENTRY_POINT_INFO(pInvokePolymorphic)
3461 QUICK_ENTRY_POINT_INFO(pTestSuspend)
3462 QUICK_ENTRY_POINT_INFO(pDeliverException)
3463 QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
3464 QUICK_ENTRY_POINT_INFO(pThrowDivZero)
3465 QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
3466 QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
3467 QUICK_ENTRY_POINT_INFO(pDeoptimize)
3468 QUICK_ENTRY_POINT_INFO(pA64Load)
3469 QUICK_ENTRY_POINT_INFO(pA64Store)
3470 QUICK_ENTRY_POINT_INFO(pNewEmptyString)
3471 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_B)
3472 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BI)
3473 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BII)
3474 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIII)
3475 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIIString)
3476 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BString)
3477 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIICharset)
3478 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BCharset)
3479 QUICK_ENTRY_POINT_INFO(pNewStringFromChars_C)
3480 QUICK_ENTRY_POINT_INFO(pNewStringFromChars_CII)
3481 QUICK_ENTRY_POINT_INFO(pNewStringFromChars_IIC)
3482 QUICK_ENTRY_POINT_INFO(pNewStringFromCodePoints)
3483 QUICK_ENTRY_POINT_INFO(pNewStringFromString)
3484 QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuffer)
3485 QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuilder)
3486 QUICK_ENTRY_POINT_INFO(pReadBarrierJni)
3487 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg00)
3488 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg01)
3489 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg02)
3490 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg03)
3491 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg04)
3492 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg05)
3493 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg06)
3494 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg07)
3495 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg08)
3496 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg09)
3497 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg10)
3498 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg11)
3499 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg12)
3500 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg13)
3501 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg14)
3502 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg15)
3503 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg16)
3504 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg17)
3505 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg18)
3506 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg19)
3507 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg20)
3508 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg21)
3509 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg22)
3510 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg23)
3511 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg24)
3512 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg25)
3513 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg26)
3514 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg27)
3515 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg28)
3516 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg29)
3517 QUICK_ENTRY_POINT_INFO(pReadBarrierSlow)
3518 QUICK_ENTRY_POINT_INFO(pReadBarrierForRootSlow)
3519
3520 QUICK_ENTRY_POINT_INFO(pJniMethodFastStart)
3521 QUICK_ENTRY_POINT_INFO(pJniMethodFastEnd)
3522 #undef QUICK_ENTRY_POINT_INFO
3523
3524 os << offset;
3525 }
3526
QuickDeliverException()3527 void Thread::QuickDeliverException() {
3528 // Get exception from thread.
3529 ObjPtr<mirror::Throwable> exception = GetException();
3530 CHECK(exception != nullptr);
3531 if (exception == GetDeoptimizationException()) {
3532 artDeoptimize(this);
3533 UNREACHABLE();
3534 }
3535
3536 ReadBarrier::MaybeAssertToSpaceInvariant(exception.Ptr());
3537
3538 // This is a real exception: let the instrumentation know about it.
3539 instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
3540 if (instrumentation->HasExceptionThrownListeners() &&
3541 IsExceptionThrownByCurrentMethod(exception)) {
3542 // Instrumentation may cause GC so keep the exception object safe.
3543 StackHandleScope<1> hs(this);
3544 HandleWrapperObjPtr<mirror::Throwable> h_exception(hs.NewHandleWrapper(&exception));
3545 instrumentation->ExceptionThrownEvent(this, exception);
3546 }
3547 // Does instrumentation need to deoptimize the stack or otherwise go to interpreter for something?
3548 // Note: we do this *after* reporting the exception to instrumentation in case it now requires
3549 // deoptimization. It may happen if a debugger is attached and requests new events (single-step,
3550 // breakpoint, ...) when the exception is reported.
3551 //
3552 // Note we need to check for both force_frame_pop and force_retry_instruction. The first is
3553 // expected to happen fairly regularly but the second can only happen if we are using
3554 // instrumentation trampolines (for example with DDMS tracing). That forces us to do deopt later
3555 // and see every frame being popped. We don't need to handle it any differently.
3556 ShadowFrame* cf;
3557 bool force_deopt = false;
3558 if (Runtime::Current()->AreNonStandardExitsEnabled() || kIsDebugBuild) {
3559 NthCallerVisitor visitor(this, 0, false);
3560 visitor.WalkStack();
3561 cf = visitor.GetCurrentShadowFrame();
3562 if (cf == nullptr) {
3563 cf = FindDebuggerShadowFrame(visitor.GetFrameId());
3564 }
3565 bool force_frame_pop = cf != nullptr && cf->GetForcePopFrame();
3566 bool force_retry_instr = cf != nullptr && cf->GetForceRetryInstruction();
3567 if (kIsDebugBuild && force_frame_pop) {
3568 DCHECK(Runtime::Current()->AreNonStandardExitsEnabled());
3569 NthCallerVisitor penultimate_visitor(this, 1, false);
3570 penultimate_visitor.WalkStack();
3571 ShadowFrame* penultimate_frame = penultimate_visitor.GetCurrentShadowFrame();
3572 if (penultimate_frame == nullptr) {
3573 penultimate_frame = FindDebuggerShadowFrame(penultimate_visitor.GetFrameId());
3574 }
3575 }
3576 if (force_retry_instr) {
3577 DCHECK(Runtime::Current()->AreNonStandardExitsEnabled());
3578 }
3579 force_deopt = force_frame_pop || force_retry_instr;
3580 }
3581 if (Dbg::IsForcedInterpreterNeededForException(this) || force_deopt || IsForceInterpreter()) {
3582 NthCallerVisitor visitor(this, 0, false);
3583 visitor.WalkStack();
3584 if (Runtime::Current()->IsAsyncDeoptimizeable(visitor.caller_pc)) {
3585 // method_type shouldn't matter due to exception handling.
3586 const DeoptimizationMethodType method_type = DeoptimizationMethodType::kDefault;
3587 // Save the exception into the deoptimization context so it can be restored
3588 // before entering the interpreter.
3589 if (force_deopt) {
3590 VLOG(deopt) << "Deopting " << cf->GetMethod()->PrettyMethod() << " for frame-pop";
3591 DCHECK(Runtime::Current()->AreNonStandardExitsEnabled());
3592 // Get rid of the exception since we are doing a framepop instead.
3593 LOG(WARNING) << "Suppressing pending exception for retry-instruction/frame-pop: "
3594 << exception->Dump();
3595 ClearException();
3596 }
3597 PushDeoptimizationContext(
3598 JValue(),
3599 /* is_reference= */ false,
3600 (force_deopt ? nullptr : exception),
3601 /* from_code= */ false,
3602 method_type);
3603 artDeoptimize(this);
3604 UNREACHABLE();
3605 } else if (visitor.caller != nullptr) {
3606 LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method "
3607 << visitor.caller->PrettyMethod();
3608 }
3609 }
3610
3611 // Don't leave exception visible while we try to find the handler, which may cause class
3612 // resolution.
3613 ClearException();
3614 QuickExceptionHandler exception_handler(this, false);
3615 exception_handler.FindCatch(exception);
3616 if (exception_handler.GetClearException()) {
3617 // Exception was cleared as part of delivery.
3618 DCHECK(!IsExceptionPending());
3619 } else {
3620 // Exception was put back with a throw location.
3621 DCHECK(IsExceptionPending());
3622 // Check the to-space invariant on the re-installed exception (if applicable).
3623 ReadBarrier::MaybeAssertToSpaceInvariant(GetException());
3624 }
3625 exception_handler.DoLongJump();
3626 }
3627
GetLongJumpContext()3628 Context* Thread::GetLongJumpContext() {
3629 Context* result = tlsPtr_.long_jump_context;
3630 if (result == nullptr) {
3631 result = Context::Create();
3632 } else {
3633 tlsPtr_.long_jump_context = nullptr; // Avoid context being shared.
3634 result->Reset();
3635 }
3636 return result;
3637 }
3638
GetCurrentMethod(uint32_t * dex_pc_out,bool check_suspended,bool abort_on_error) const3639 ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc_out,
3640 bool check_suspended,
3641 bool abort_on_error) const {
3642 // Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is
3643 // so we don't abort in a special situation (thinlocked monitor) when dumping the Java
3644 // stack.
3645 ArtMethod* method = nullptr;
3646 uint32_t dex_pc = dex::kDexNoIndex;
3647 StackVisitor::WalkStack(
3648 [&](const StackVisitor* visitor) REQUIRES_SHARED(Locks::mutator_lock_) {
3649 ArtMethod* m = visitor->GetMethod();
3650 if (m->IsRuntimeMethod()) {
3651 // Continue if this is a runtime method.
3652 return true;
3653 }
3654 method = m;
3655 dex_pc = visitor->GetDexPc(abort_on_error);
3656 return false;
3657 },
3658 const_cast<Thread*>(this),
3659 /* context= */ nullptr,
3660 StackVisitor::StackWalkKind::kIncludeInlinedFrames,
3661 check_suspended);
3662
3663 if (dex_pc_out != nullptr) {
3664 *dex_pc_out = dex_pc;
3665 }
3666 return method;
3667 }
3668
HoldsLock(ObjPtr<mirror::Object> object) const3669 bool Thread::HoldsLock(ObjPtr<mirror::Object> object) const {
3670 return object != nullptr && object->GetLockOwnerThreadId() == GetThreadId();
3671 }
3672
3673 extern std::vector<StackReference<mirror::Object>*> GetProxyReferenceArguments(ArtMethod** sp)
3674 REQUIRES_SHARED(Locks::mutator_lock_);
3675
3676 // RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
3677 template <typename RootVisitor, bool kPrecise = false>
3678 class ReferenceMapVisitor : public StackVisitor {
3679 public:
ReferenceMapVisitor(Thread * thread,Context * context,RootVisitor & visitor)3680 ReferenceMapVisitor(Thread* thread, Context* context, RootVisitor& visitor)
3681 REQUIRES_SHARED(Locks::mutator_lock_)
3682 // We are visiting the references in compiled frames, so we do not need
3683 // to know the inlined frames.
3684 : StackVisitor(thread, context, StackVisitor::StackWalkKind::kSkipInlinedFrames),
3685 visitor_(visitor) {}
3686
VisitFrame()3687 bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) {
3688 if (false) {
3689 LOG(INFO) << "Visiting stack roots in " << ArtMethod::PrettyMethod(GetMethod())
3690 << StringPrintf("@ PC:%04x", GetDexPc());
3691 }
3692 ShadowFrame* shadow_frame = GetCurrentShadowFrame();
3693 if (shadow_frame != nullptr) {
3694 VisitShadowFrame(shadow_frame);
3695 } else if (GetCurrentOatQuickMethodHeader()->IsNterpMethodHeader()) {
3696 VisitNterpFrame();
3697 } else {
3698 VisitQuickFrame();
3699 }
3700 return true;
3701 }
3702
VisitShadowFrame(ShadowFrame * shadow_frame)3703 void VisitShadowFrame(ShadowFrame* shadow_frame) REQUIRES_SHARED(Locks::mutator_lock_) {
3704 ArtMethod* m = shadow_frame->GetMethod();
3705 VisitDeclaringClass(m);
3706 DCHECK(m != nullptr);
3707 size_t num_regs = shadow_frame->NumberOfVRegs();
3708 // handle scope for JNI or References for interpreter.
3709 for (size_t reg = 0; reg < num_regs; ++reg) {
3710 mirror::Object* ref = shadow_frame->GetVRegReference(reg);
3711 if (ref != nullptr) {
3712 mirror::Object* new_ref = ref;
3713 visitor_(&new_ref, reg, this);
3714 if (new_ref != ref) {
3715 shadow_frame->SetVRegReference(reg, new_ref);
3716 }
3717 }
3718 }
3719 // Mark lock count map required for structured locking checks.
3720 shadow_frame->GetLockCountData().VisitMonitors(visitor_, /* vreg= */ -1, this);
3721 }
3722
3723 private:
3724 // Visiting the declaring class is necessary so that we don't unload the class of a method that
3725 // is executing. We need to ensure that the code stays mapped. NO_THREAD_SAFETY_ANALYSIS since
3726 // the threads do not all hold the heap bitmap lock for parallel GC.
VisitDeclaringClass(ArtMethod * method)3727 void VisitDeclaringClass(ArtMethod* method)
3728 REQUIRES_SHARED(Locks::mutator_lock_)
3729 NO_THREAD_SAFETY_ANALYSIS {
3730 ObjPtr<mirror::Class> klass = method->GetDeclaringClassUnchecked<kWithoutReadBarrier>();
3731 // klass can be null for runtime methods.
3732 if (klass != nullptr) {
3733 if (kVerifyImageObjectsMarked) {
3734 gc::Heap* const heap = Runtime::Current()->GetHeap();
3735 gc::space::ContinuousSpace* space = heap->FindContinuousSpaceFromObject(klass,
3736 /*fail_ok=*/true);
3737 if (space != nullptr && space->IsImageSpace()) {
3738 bool failed = false;
3739 if (!space->GetLiveBitmap()->Test(klass.Ptr())) {
3740 failed = true;
3741 LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image " << *space;
3742 } else if (!heap->GetLiveBitmap()->Test(klass.Ptr())) {
3743 failed = true;
3744 LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image through live bitmap " << *space;
3745 }
3746 if (failed) {
3747 GetThread()->Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
3748 space->AsImageSpace()->DumpSections(LOG_STREAM(FATAL_WITHOUT_ABORT));
3749 LOG(FATAL_WITHOUT_ABORT) << "Method@" << method->GetDexMethodIndex() << ":" << method
3750 << " klass@" << klass.Ptr();
3751 // Pretty info last in case it crashes.
3752 LOG(FATAL) << "Method " << method->PrettyMethod() << " klass "
3753 << klass->PrettyClass();
3754 }
3755 }
3756 }
3757 mirror::Object* new_ref = klass.Ptr();
3758 visitor_(&new_ref, /* vreg= */ JavaFrameRootInfo::kMethodDeclaringClass, this);
3759 if (new_ref != klass) {
3760 method->CASDeclaringClass(klass.Ptr(), new_ref->AsClass());
3761 }
3762 }
3763 }
3764
VisitNterpFrame()3765 void VisitNterpFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
3766 ArtMethod** cur_quick_frame = GetCurrentQuickFrame();
3767 StackReference<mirror::Object>* vreg_ref_base =
3768 reinterpret_cast<StackReference<mirror::Object>*>(NterpGetReferenceArray(cur_quick_frame));
3769 StackReference<mirror::Object>* vreg_int_base =
3770 reinterpret_cast<StackReference<mirror::Object>*>(NterpGetRegistersArray(cur_quick_frame));
3771 CodeItemDataAccessor accessor((*cur_quick_frame)->DexInstructionData());
3772 const uint16_t num_regs = accessor.RegistersSize();
3773 // An nterp frame has two arrays: a dex register array and a reference array
3774 // that shadows the dex register array but only containing references
3775 // (non-reference dex registers have nulls). See nterp_helpers.cc.
3776 for (size_t reg = 0; reg < num_regs; ++reg) {
3777 StackReference<mirror::Object>* ref_addr = vreg_ref_base + reg;
3778 mirror::Object* ref = ref_addr->AsMirrorPtr();
3779 if (ref != nullptr) {
3780 mirror::Object* new_ref = ref;
3781 visitor_(&new_ref, reg, this);
3782 if (new_ref != ref) {
3783 ref_addr->Assign(new_ref);
3784 StackReference<mirror::Object>* int_addr = vreg_int_base + reg;
3785 int_addr->Assign(new_ref);
3786 }
3787 }
3788 }
3789 }
3790
3791 template <typename T>
3792 ALWAYS_INLINE
VisitQuickFrameWithVregCallback()3793 inline void VisitQuickFrameWithVregCallback() REQUIRES_SHARED(Locks::mutator_lock_) {
3794 ArtMethod** cur_quick_frame = GetCurrentQuickFrame();
3795 DCHECK(cur_quick_frame != nullptr);
3796 ArtMethod* m = *cur_quick_frame;
3797 VisitDeclaringClass(m);
3798
3799 // Process register map (which native and runtime methods don't have)
3800 if (!m->IsNative() && !m->IsRuntimeMethod() && (!m->IsProxyMethod() || m->IsConstructor())) {
3801 const OatQuickMethodHeader* method_header = GetCurrentOatQuickMethodHeader();
3802 DCHECK(method_header->IsOptimized());
3803 StackReference<mirror::Object>* vreg_base =
3804 reinterpret_cast<StackReference<mirror::Object>*>(cur_quick_frame);
3805 uintptr_t native_pc_offset = method_header->NativeQuickPcOffset(GetCurrentQuickFramePc());
3806 CodeInfo code_info = kPrecise
3807 ? CodeInfo(method_header) // We will need dex register maps.
3808 : CodeInfo::DecodeGcMasksOnly(method_header);
3809 StackMap map = code_info.GetStackMapForNativePcOffset(native_pc_offset);
3810 DCHECK(map.IsValid());
3811
3812 T vreg_info(m, code_info, map, visitor_);
3813
3814 // Visit stack entries that hold pointers.
3815 BitMemoryRegion stack_mask = code_info.GetStackMaskOf(map);
3816 for (size_t i = 0; i < stack_mask.size_in_bits(); ++i) {
3817 if (stack_mask.LoadBit(i)) {
3818 StackReference<mirror::Object>* ref_addr = vreg_base + i;
3819 mirror::Object* ref = ref_addr->AsMirrorPtr();
3820 if (ref != nullptr) {
3821 mirror::Object* new_ref = ref;
3822 vreg_info.VisitStack(&new_ref, i, this);
3823 if (ref != new_ref) {
3824 ref_addr->Assign(new_ref);
3825 }
3826 }
3827 }
3828 }
3829 // Visit callee-save registers that hold pointers.
3830 uint32_t register_mask = code_info.GetRegisterMaskOf(map);
3831 for (size_t i = 0; i < BitSizeOf<uint32_t>(); ++i) {
3832 if (register_mask & (1 << i)) {
3833 mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(i));
3834 if (kIsDebugBuild && ref_addr == nullptr) {
3835 std::string thread_name;
3836 GetThread()->GetThreadName(thread_name);
3837 LOG(FATAL_WITHOUT_ABORT) << "On thread " << thread_name;
3838 DescribeStack(GetThread());
3839 LOG(FATAL) << "Found an unsaved callee-save register " << i << " (null GPRAddress) "
3840 << "set in register_mask=" << register_mask << " at " << DescribeLocation();
3841 }
3842 if (*ref_addr != nullptr) {
3843 vreg_info.VisitRegister(ref_addr, i, this);
3844 }
3845 }
3846 }
3847 } else if (!m->IsRuntimeMethod() && m->IsProxyMethod()) {
3848 // If this is a proxy method, visit its reference arguments.
3849 DCHECK(!m->IsStatic());
3850 DCHECK(!m->IsNative());
3851 std::vector<StackReference<mirror::Object>*> ref_addrs =
3852 GetProxyReferenceArguments(cur_quick_frame);
3853 for (StackReference<mirror::Object>* ref_addr : ref_addrs) {
3854 mirror::Object* ref = ref_addr->AsMirrorPtr();
3855 if (ref != nullptr) {
3856 mirror::Object* new_ref = ref;
3857 visitor_(&new_ref, /* vreg= */ JavaFrameRootInfo::kProxyReferenceArgument, this);
3858 if (ref != new_ref) {
3859 ref_addr->Assign(new_ref);
3860 }
3861 }
3862 }
3863 }
3864 }
3865
VisitQuickFrame()3866 void VisitQuickFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
3867 if (kPrecise) {
3868 VisitQuickFramePrecise();
3869 } else {
3870 VisitQuickFrameNonPrecise();
3871 }
3872 }
3873
VisitQuickFrameNonPrecise()3874 void VisitQuickFrameNonPrecise() REQUIRES_SHARED(Locks::mutator_lock_) {
3875 struct UndefinedVRegInfo {
3876 UndefinedVRegInfo(ArtMethod* method ATTRIBUTE_UNUSED,
3877 const CodeInfo& code_info ATTRIBUTE_UNUSED,
3878 const StackMap& map ATTRIBUTE_UNUSED,
3879 RootVisitor& _visitor)
3880 : visitor(_visitor) {
3881 }
3882
3883 ALWAYS_INLINE
3884 void VisitStack(mirror::Object** ref,
3885 size_t stack_index ATTRIBUTE_UNUSED,
3886 const StackVisitor* stack_visitor)
3887 REQUIRES_SHARED(Locks::mutator_lock_) {
3888 visitor(ref, JavaFrameRootInfo::kImpreciseVreg, stack_visitor);
3889 }
3890
3891 ALWAYS_INLINE
3892 void VisitRegister(mirror::Object** ref,
3893 size_t register_index ATTRIBUTE_UNUSED,
3894 const StackVisitor* stack_visitor)
3895 REQUIRES_SHARED(Locks::mutator_lock_) {
3896 visitor(ref, JavaFrameRootInfo::kImpreciseVreg, stack_visitor);
3897 }
3898
3899 RootVisitor& visitor;
3900 };
3901 VisitQuickFrameWithVregCallback<UndefinedVRegInfo>();
3902 }
3903
VisitQuickFramePrecise()3904 void VisitQuickFramePrecise() REQUIRES_SHARED(Locks::mutator_lock_) {
3905 struct StackMapVRegInfo {
3906 StackMapVRegInfo(ArtMethod* method,
3907 const CodeInfo& _code_info,
3908 const StackMap& map,
3909 RootVisitor& _visitor)
3910 : number_of_dex_registers(method->DexInstructionData().RegistersSize()),
3911 code_info(_code_info),
3912 dex_register_map(code_info.GetDexRegisterMapOf(map)),
3913 visitor(_visitor) {
3914 DCHECK_EQ(dex_register_map.size(), number_of_dex_registers);
3915 }
3916
3917 // TODO: If necessary, we should consider caching a reverse map instead of the linear
3918 // lookups for each location.
3919 void FindWithType(const size_t index,
3920 const DexRegisterLocation::Kind kind,
3921 mirror::Object** ref,
3922 const StackVisitor* stack_visitor)
3923 REQUIRES_SHARED(Locks::mutator_lock_) {
3924 bool found = false;
3925 for (size_t dex_reg = 0; dex_reg != number_of_dex_registers; ++dex_reg) {
3926 DexRegisterLocation location = dex_register_map[dex_reg];
3927 if (location.GetKind() == kind && static_cast<size_t>(location.GetValue()) == index) {
3928 visitor(ref, dex_reg, stack_visitor);
3929 found = true;
3930 }
3931 }
3932
3933 if (!found) {
3934 // If nothing found, report with unknown.
3935 visitor(ref, JavaFrameRootInfo::kUnknownVreg, stack_visitor);
3936 }
3937 }
3938
3939 void VisitStack(mirror::Object** ref, size_t stack_index, const StackVisitor* stack_visitor)
3940 REQUIRES_SHARED(Locks::mutator_lock_) {
3941 const size_t stack_offset = stack_index * kFrameSlotSize;
3942 FindWithType(stack_offset,
3943 DexRegisterLocation::Kind::kInStack,
3944 ref,
3945 stack_visitor);
3946 }
3947
3948 void VisitRegister(mirror::Object** ref,
3949 size_t register_index,
3950 const StackVisitor* stack_visitor)
3951 REQUIRES_SHARED(Locks::mutator_lock_) {
3952 FindWithType(register_index,
3953 DexRegisterLocation::Kind::kInRegister,
3954 ref,
3955 stack_visitor);
3956 }
3957
3958 size_t number_of_dex_registers;
3959 const CodeInfo& code_info;
3960 DexRegisterMap dex_register_map;
3961 RootVisitor& visitor;
3962 };
3963 VisitQuickFrameWithVregCallback<StackMapVRegInfo>();
3964 }
3965
3966 // Visitor for when we visit a root.
3967 RootVisitor& visitor_;
3968 };
3969
3970 class RootCallbackVisitor {
3971 public:
RootCallbackVisitor(RootVisitor * visitor,uint32_t tid)3972 RootCallbackVisitor(RootVisitor* visitor, uint32_t tid) : visitor_(visitor), tid_(tid) {}
3973
operator ()(mirror::Object ** obj,size_t vreg,const StackVisitor * stack_visitor) const3974 void operator()(mirror::Object** obj, size_t vreg, const StackVisitor* stack_visitor) const
3975 REQUIRES_SHARED(Locks::mutator_lock_) {
3976 visitor_->VisitRoot(obj, JavaFrameRootInfo(tid_, stack_visitor, vreg));
3977 }
3978
3979 private:
3980 RootVisitor* const visitor_;
3981 const uint32_t tid_;
3982 };
3983
VisitReflectiveTargets(ReflectiveValueVisitor * visitor)3984 void Thread::VisitReflectiveTargets(ReflectiveValueVisitor* visitor) {
3985 for (BaseReflectiveHandleScope* brhs = GetTopReflectiveHandleScope();
3986 brhs != nullptr;
3987 brhs = brhs->GetLink()) {
3988 brhs->VisitTargets(visitor);
3989 }
3990 }
3991
3992 template <bool kPrecise>
VisitRoots(RootVisitor * visitor)3993 void Thread::VisitRoots(RootVisitor* visitor) {
3994 const pid_t thread_id = GetThreadId();
3995 visitor->VisitRootIfNonNull(&tlsPtr_.opeer, RootInfo(kRootThreadObject, thread_id));
3996 if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
3997 visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception),
3998 RootInfo(kRootNativeStack, thread_id));
3999 }
4000 if (tlsPtr_.async_exception != nullptr) {
4001 visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.async_exception),
4002 RootInfo(kRootNativeStack, thread_id));
4003 }
4004 visitor->VisitRootIfNonNull(&tlsPtr_.monitor_enter_object, RootInfo(kRootNativeStack, thread_id));
4005 tlsPtr_.jni_env->VisitJniLocalRoots(visitor, RootInfo(kRootJNILocal, thread_id));
4006 tlsPtr_.jni_env->VisitMonitorRoots(visitor, RootInfo(kRootJNIMonitor, thread_id));
4007 HandleScopeVisitRoots(visitor, thread_id);
4008 // Visit roots for deoptimization.
4009 if (tlsPtr_.stacked_shadow_frame_record != nullptr) {
4010 RootCallbackVisitor visitor_to_callback(visitor, thread_id);
4011 ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback);
4012 for (StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
4013 record != nullptr;
4014 record = record->GetLink()) {
4015 for (ShadowFrame* shadow_frame = record->GetShadowFrame();
4016 shadow_frame != nullptr;
4017 shadow_frame = shadow_frame->GetLink()) {
4018 mapper.VisitShadowFrame(shadow_frame);
4019 }
4020 }
4021 }
4022 for (DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
4023 record != nullptr;
4024 record = record->GetLink()) {
4025 if (record->IsReference()) {
4026 visitor->VisitRootIfNonNull(record->GetReturnValueAsGCRoot(),
4027 RootInfo(kRootThreadObject, thread_id));
4028 }
4029 visitor->VisitRootIfNonNull(record->GetPendingExceptionAsGCRoot(),
4030 RootInfo(kRootThreadObject, thread_id));
4031 }
4032 if (tlsPtr_.frame_id_to_shadow_frame != nullptr) {
4033 RootCallbackVisitor visitor_to_callback(visitor, thread_id);
4034 ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback);
4035 for (FrameIdToShadowFrame* record = tlsPtr_.frame_id_to_shadow_frame;
4036 record != nullptr;
4037 record = record->GetNext()) {
4038 mapper.VisitShadowFrame(record->GetShadowFrame());
4039 }
4040 }
4041 for (auto* verifier = tlsPtr_.method_verifier; verifier != nullptr; verifier = verifier->link_) {
4042 verifier->VisitRoots(visitor, RootInfo(kRootNativeStack, thread_id));
4043 }
4044 // Visit roots on this thread's stack
4045 RuntimeContextType context;
4046 RootCallbackVisitor visitor_to_callback(visitor, thread_id);
4047 ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, &context, visitor_to_callback);
4048 mapper.template WalkStack<StackVisitor::CountTransitions::kNo>(false);
4049 for (auto& entry : *GetInstrumentationStack()) {
4050 visitor->VisitRootIfNonNull(&entry.second.this_object_, RootInfo(kRootVMInternal, thread_id));
4051 }
4052 }
4053
SweepInterpreterCache(IsMarkedVisitor * visitor)4054 void Thread::SweepInterpreterCache(IsMarkedVisitor* visitor) {
4055 for (InterpreterCache::Entry& entry : GetInterpreterCache()->GetArray()) {
4056 const Instruction* inst = reinterpret_cast<const Instruction*>(entry.first);
4057 if (inst != nullptr) {
4058 if (inst->Opcode() == Instruction::NEW_INSTANCE ||
4059 inst->Opcode() == Instruction::CHECK_CAST ||
4060 inst->Opcode() == Instruction::INSTANCE_OF ||
4061 inst->Opcode() == Instruction::NEW_ARRAY ||
4062 inst->Opcode() == Instruction::CONST_CLASS) {
4063 mirror::Class* cls = reinterpret_cast<mirror::Class*>(entry.second);
4064 if (cls == nullptr || cls == Runtime::GetWeakClassSentinel()) {
4065 // Entry got deleted in a previous sweep.
4066 continue;
4067 }
4068 Runtime::ProcessWeakClass(
4069 reinterpret_cast<GcRoot<mirror::Class>*>(&entry.second),
4070 visitor,
4071 Runtime::GetWeakClassSentinel());
4072 } else if (inst->Opcode() == Instruction::CONST_STRING ||
4073 inst->Opcode() == Instruction::CONST_STRING_JUMBO) {
4074 mirror::Object* object = reinterpret_cast<mirror::Object*>(entry.second);
4075 mirror::Object* new_object = visitor->IsMarked(object);
4076 // We know the string is marked because it's a strongly-interned string that
4077 // is always alive (see b/117621117 for trying to make those strings weak).
4078 // The IsMarked implementation of the CMS collector returns
4079 // null for newly allocated objects, but we know those haven't moved. Therefore,
4080 // only update the entry if we get a different non-null string.
4081 if (new_object != nullptr && new_object != object) {
4082 entry.second = reinterpret_cast<size_t>(new_object);
4083 }
4084 }
4085 }
4086 }
4087 }
4088
VisitRoots(RootVisitor * visitor,VisitRootFlags flags)4089 void Thread::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
4090 if ((flags & VisitRootFlags::kVisitRootFlagPrecise) != 0) {
4091 VisitRoots</* kPrecise= */ true>(visitor);
4092 } else {
4093 VisitRoots</* kPrecise= */ false>(visitor);
4094 }
4095 }
4096
4097 class VerifyRootVisitor : public SingleRootVisitor {
4098 public:
VisitRoot(mirror::Object * root,const RootInfo & info ATTRIBUTE_UNUSED)4099 void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
4100 override REQUIRES_SHARED(Locks::mutator_lock_) {
4101 VerifyObject(root);
4102 }
4103 };
4104
VerifyStackImpl()4105 void Thread::VerifyStackImpl() {
4106 if (Runtime::Current()->GetHeap()->IsObjectValidationEnabled()) {
4107 VerifyRootVisitor visitor;
4108 std::unique_ptr<Context> context(Context::Create());
4109 RootCallbackVisitor visitor_to_callback(&visitor, GetThreadId());
4110 ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitor_to_callback);
4111 mapper.WalkStack();
4112 }
4113 }
4114
4115 // Set the stack end to that to be used during a stack overflow
SetStackEndForStackOverflow()4116 void Thread::SetStackEndForStackOverflow() {
4117 // During stack overflow we allow use of the full stack.
4118 if (tlsPtr_.stack_end == tlsPtr_.stack_begin) {
4119 // However, we seem to have already extended to use the full stack.
4120 LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
4121 << GetStackOverflowReservedBytes(kRuntimeISA) << ")?";
4122 DumpStack(LOG_STREAM(ERROR));
4123 LOG(FATAL) << "Recursive stack overflow.";
4124 }
4125
4126 tlsPtr_.stack_end = tlsPtr_.stack_begin;
4127
4128 // Remove the stack overflow protection if is it set up.
4129 bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
4130 if (implicit_stack_check) {
4131 if (!UnprotectStack()) {
4132 LOG(ERROR) << "Unable to remove stack protection for stack overflow";
4133 }
4134 }
4135 }
4136
SetTlab(uint8_t * start,uint8_t * end,uint8_t * limit)4137 void Thread::SetTlab(uint8_t* start, uint8_t* end, uint8_t* limit) {
4138 DCHECK_LE(start, end);
4139 DCHECK_LE(end, limit);
4140 tlsPtr_.thread_local_start = start;
4141 tlsPtr_.thread_local_pos = tlsPtr_.thread_local_start;
4142 tlsPtr_.thread_local_end = end;
4143 tlsPtr_.thread_local_limit = limit;
4144 tlsPtr_.thread_local_objects = 0;
4145 }
4146
ResetTlab()4147 void Thread::ResetTlab() {
4148 SetTlab(nullptr, nullptr, nullptr);
4149 }
4150
HasTlab() const4151 bool Thread::HasTlab() const {
4152 const bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
4153 if (has_tlab) {
4154 DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
4155 } else {
4156 DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
4157 }
4158 return has_tlab;
4159 }
4160
operator <<(std::ostream & os,const Thread & thread)4161 std::ostream& operator<<(std::ostream& os, const Thread& thread) {
4162 thread.ShortDump(os);
4163 return os;
4164 }
4165
ProtectStack(bool fatal_on_error)4166 bool Thread::ProtectStack(bool fatal_on_error) {
4167 void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
4168 VLOG(threads) << "Protecting stack at " << pregion;
4169 if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) {
4170 if (fatal_on_error) {
4171 LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. "
4172 "Reason: "
4173 << strerror(errno) << " size: " << kStackOverflowProtectedSize;
4174 }
4175 return false;
4176 }
4177 return true;
4178 }
4179
UnprotectStack()4180 bool Thread::UnprotectStack() {
4181 void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
4182 VLOG(threads) << "Unprotecting stack at " << pregion;
4183 return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0;
4184 }
4185
PushVerifier(verifier::MethodVerifier * verifier)4186 void Thread::PushVerifier(verifier::MethodVerifier* verifier) {
4187 verifier->link_ = tlsPtr_.method_verifier;
4188 tlsPtr_.method_verifier = verifier;
4189 }
4190
PopVerifier(verifier::MethodVerifier * verifier)4191 void Thread::PopVerifier(verifier::MethodVerifier* verifier) {
4192 CHECK_EQ(tlsPtr_.method_verifier, verifier);
4193 tlsPtr_.method_verifier = verifier->link_;
4194 }
4195
NumberOfHeldMutexes() const4196 size_t Thread::NumberOfHeldMutexes() const {
4197 size_t count = 0;
4198 for (BaseMutex* mu : tlsPtr_.held_mutexes) {
4199 count += mu != nullptr ? 1 : 0;
4200 }
4201 return count;
4202 }
4203
DeoptimizeWithDeoptimizationException(JValue * result)4204 void Thread::DeoptimizeWithDeoptimizationException(JValue* result) {
4205 DCHECK_EQ(GetException(), Thread::GetDeoptimizationException());
4206 ClearException();
4207 ShadowFrame* shadow_frame =
4208 PopStackedShadowFrame(StackedShadowFrameType::kDeoptimizationShadowFrame);
4209 ObjPtr<mirror::Throwable> pending_exception;
4210 bool from_code = false;
4211 DeoptimizationMethodType method_type;
4212 PopDeoptimizationContext(result, &pending_exception, &from_code, &method_type);
4213 SetTopOfStack(nullptr);
4214 SetTopOfShadowStack(shadow_frame);
4215
4216 // Restore the exception that was pending before deoptimization then interpret the
4217 // deoptimized frames.
4218 if (pending_exception != nullptr) {
4219 SetException(pending_exception);
4220 }
4221 interpreter::EnterInterpreterFromDeoptimize(this,
4222 shadow_frame,
4223 result,
4224 from_code,
4225 method_type);
4226 }
4227
SetAsyncException(ObjPtr<mirror::Throwable> new_exception)4228 void Thread::SetAsyncException(ObjPtr<mirror::Throwable> new_exception) {
4229 CHECK(new_exception != nullptr);
4230 Runtime::Current()->SetAsyncExceptionsThrown();
4231 if (kIsDebugBuild) {
4232 // Make sure we are in a checkpoint.
4233 MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
4234 CHECK(this == Thread::Current() || GetSuspendCount() >= 1)
4235 << "It doesn't look like this was called in a checkpoint! this: "
4236 << this << " count: " << GetSuspendCount();
4237 }
4238 tlsPtr_.async_exception = new_exception.Ptr();
4239 }
4240
ObserveAsyncException()4241 bool Thread::ObserveAsyncException() {
4242 DCHECK(this == Thread::Current());
4243 if (tlsPtr_.async_exception != nullptr) {
4244 if (tlsPtr_.exception != nullptr) {
4245 LOG(WARNING) << "Overwriting pending exception with async exception. Pending exception is: "
4246 << tlsPtr_.exception->Dump();
4247 LOG(WARNING) << "Async exception is " << tlsPtr_.async_exception->Dump();
4248 }
4249 tlsPtr_.exception = tlsPtr_.async_exception;
4250 tlsPtr_.async_exception = nullptr;
4251 return true;
4252 } else {
4253 return IsExceptionPending();
4254 }
4255 }
4256
SetException(ObjPtr<mirror::Throwable> new_exception)4257 void Thread::SetException(ObjPtr<mirror::Throwable> new_exception) {
4258 CHECK(new_exception != nullptr);
4259 // TODO: DCHECK(!IsExceptionPending());
4260 tlsPtr_.exception = new_exception.Ptr();
4261 }
4262
IsAotCompiler()4263 bool Thread::IsAotCompiler() {
4264 return Runtime::Current()->IsAotCompiler();
4265 }
4266
GetPeerFromOtherThread() const4267 mirror::Object* Thread::GetPeerFromOtherThread() const {
4268 DCHECK(tlsPtr_.jpeer == nullptr);
4269 mirror::Object* peer = tlsPtr_.opeer;
4270 if (kUseReadBarrier && Current()->GetIsGcMarking()) {
4271 // We may call Thread::Dump() in the middle of the CC thread flip and this thread's stack
4272 // may have not been flipped yet and peer may be a from-space (stale) ref. So explicitly
4273 // mark/forward it here.
4274 peer = art::ReadBarrier::Mark(peer);
4275 }
4276 return peer;
4277 }
4278
SetReadBarrierEntrypoints()4279 void Thread::SetReadBarrierEntrypoints() {
4280 // Make sure entrypoints aren't null.
4281 UpdateReadBarrierEntrypoints(&tlsPtr_.quick_entrypoints, /* is_active=*/ true);
4282 }
4283
ClearAllInterpreterCaches()4284 void Thread::ClearAllInterpreterCaches() {
4285 static struct ClearInterpreterCacheClosure : Closure {
4286 void Run(Thread* thread) override {
4287 thread->GetInterpreterCache()->Clear(thread);
4288 }
4289 } closure;
4290 Runtime::Current()->GetThreadList()->RunCheckpoint(&closure);
4291 }
4292
4293
ReleaseLongJumpContextInternal()4294 void Thread::ReleaseLongJumpContextInternal() {
4295 // Each QuickExceptionHandler gets a long jump context and uses
4296 // it for doing the long jump, after finding catch blocks/doing deoptimization.
4297 // Both finding catch blocks and deoptimization can trigger another
4298 // exception such as a result of class loading. So there can be nested
4299 // cases of exception handling and multiple contexts being used.
4300 // ReleaseLongJumpContext tries to save the context in tlsPtr_.long_jump_context
4301 // for reuse so there is no need to always allocate a new one each time when
4302 // getting a context. Since we only keep one context for reuse, delete the
4303 // existing one since the passed in context is yet to be used for longjump.
4304 delete tlsPtr_.long_jump_context;
4305 }
4306
SetNativePriority(int new_priority)4307 void Thread::SetNativePriority(int new_priority) {
4308 PaletteStatus status = PaletteSchedSetPriority(GetTid(), new_priority);
4309 CHECK(status == PaletteStatus::kOkay || status == PaletteStatus::kCheckErrno);
4310 }
4311
GetNativePriority() const4312 int Thread::GetNativePriority() const {
4313 int priority = 0;
4314 PaletteStatus status = PaletteSchedGetPriority(GetTid(), &priority);
4315 CHECK(status == PaletteStatus::kOkay || status == PaletteStatus::kCheckErrno);
4316 return priority;
4317 }
4318
IsSystemDaemon() const4319 bool Thread::IsSystemDaemon() const {
4320 if (GetPeer() == nullptr) {
4321 return false;
4322 }
4323 return jni::DecodeArtField(
4324 WellKnownClasses::java_lang_Thread_systemDaemon)->GetBoolean(GetPeer());
4325 }
4326
ScopedExceptionStorage(art::Thread * self)4327 ScopedExceptionStorage::ScopedExceptionStorage(art::Thread* self)
4328 : self_(self), hs_(self_), excp_(hs_.NewHandle<art::mirror::Throwable>(self_->GetException())) {
4329 self_->ClearException();
4330 }
4331
SuppressOldException(const char * message)4332 void ScopedExceptionStorage::SuppressOldException(const char* message) {
4333 CHECK(self_->IsExceptionPending()) << *self_;
4334 ObjPtr<mirror::Throwable> old_suppressed(excp_.Get());
4335 excp_.Assign(self_->GetException());
4336 LOG(WARNING) << message << "Suppressing old exception: " << old_suppressed->Dump();
4337 self_->ClearException();
4338 }
4339
~ScopedExceptionStorage()4340 ScopedExceptionStorage::~ScopedExceptionStorage() {
4341 CHECK(!self_->IsExceptionPending()) << *self_;
4342 if (!excp_.IsNull()) {
4343 self_->SetException(excp_.Get());
4344 }
4345 }
4346
4347 } // namespace art
4348