1# Copyright 2014 The Android Open Source Project 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14 15import os.path 16import its.caps 17import its.device 18import its.image 19import its.objects 20import matplotlib 21from matplotlib import pylab 22import numpy 23 24LOCKED = 3 25MAX_LUMA_DELTA_THRESH = 0.05 26NAME = os.path.basename(__file__).split('.')[0] 27THRESH_CONVERGE_FOR_EV = 8 # AE must converge in this num auto reqs for EV 28 29 30def main(): 31 """Tests that EV compensation is applied.""" 32 33 with its.device.ItsSession() as cam: 34 props = cam.get_camera_properties() 35 its.caps.skip_unless(its.caps.manual_sensor(props) and 36 its.caps.manual_post_proc(props) and 37 its.caps.per_frame_control(props) and 38 its.caps.ev_compensation(props)) 39 40 mono_camera = its.caps.mono_camera(props) 41 debug = its.caps.debug_mode() 42 largest_yuv = its.objects.get_largest_yuv_format(props) 43 if debug: 44 fmt = largest_yuv 45 else: 46 match_ar = (largest_yuv['width'], largest_yuv['height']) 47 fmt = its.objects.get_smallest_yuv_format(props, match_ar=match_ar) 48 49 ev_compensation_range = props['android.control.aeCompensationRange'] 50 range_min = ev_compensation_range[0] 51 range_max = ev_compensation_range[1] 52 ev_per_step = its.objects.rational_to_float( 53 props['android.control.aeCompensationStep']) 54 steps_per_ev = int(round(1.0 / ev_per_step)) 55 ev_steps = range(range_min, range_max + 1, steps_per_ev) 56 imid = len(ev_steps) / 2 57 ev_shifts = [pow(2, step * ev_per_step) for step in ev_steps] 58 lumas = [] 59 60 # Converge 3A, and lock AE once converged. skip AF trigger as 61 # dark/bright scene could make AF convergence fail and this test 62 # doesn't care the image sharpness. 63 cam.do_3a(ev_comp=0, lock_ae=True, do_af=False, mono_camera=mono_camera) 64 65 for ev in ev_steps: 66 67 # Capture a single shot with the same EV comp and locked AE. 68 req = its.objects.auto_capture_request() 69 req['android.control.aeExposureCompensation'] = ev 70 req['android.control.aeLock'] = True 71 # Use linear tone curve to avoid brightness being impacted 72 # by tone curves. 73 req['android.tonemap.mode'] = 0 74 req['android.tonemap.curve'] = { 75 'red': [0.0, 0.0, 1.0, 1.0], 76 'green': [0.0, 0.0, 1.0, 1.0], 77 'blue': [0.0, 0.0, 1.0, 1.0]} 78 caps = cam.do_capture([req]*THRESH_CONVERGE_FOR_EV, fmt) 79 80 for cap in caps: 81 if cap['metadata']['android.control.aeState'] == LOCKED: 82 y = its.image.convert_capture_to_planes(cap)[0] 83 tile = its.image.get_image_patch(y, 0.45, 0.45, 0.1, 0.1) 84 lumas.append(its.image.compute_image_means(tile)[0]) 85 break 86 assert cap['metadata']['android.control.aeState'] == LOCKED 87 88 print 'ev_step_size_in_stops', ev_per_step 89 shift_mid = ev_shifts[imid] 90 luma_normal = lumas[imid] / shift_mid 91 expected_lumas = [min(1.0, luma_normal*ev_shift) for ev_shift in ev_shifts] 92 93 pylab.plot(ev_steps, lumas, '-ro') 94 pylab.plot(ev_steps, expected_lumas, '-bo') 95 pylab.title(NAME) 96 pylab.xlabel('EV Compensation') 97 pylab.ylabel('Mean Luma (Normalized)') 98 99 matplotlib.pyplot.savefig('%s_plot_means.png' % (NAME)) 100 101 luma_diffs = [expected_lumas[i]-lumas[i] for i in range(len(ev_steps))] 102 max_diff = max(abs(i) for i in luma_diffs) 103 avg_diff = abs(numpy.array(luma_diffs)).mean() 104 print 'Max delta between modeled and measured lumas:', max_diff 105 print 'Avg delta between modeled and measured lumas:', avg_diff 106 assert max_diff < MAX_LUMA_DELTA_THRESH, 'diff: %.3f, THRESH: %.2f' % ( 107 max_diff, MAX_LUMA_DELTA_THRESH) 108 109 110if __name__ == '__main__': 111 main() 112