1# Copyright 2013 The Android Open Source Project 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14 15import os.path 16 17import its.caps 18import its.device 19import its.image 20import its.objects 21import its.target 22 23import matplotlib 24from matplotlib import pylab 25 26NAME = os.path.basename(__file__).split('.')[0] 27NUM_STEPS = 5 28 29 30def main(): 31 """Test that the android.sensor.sensitivity parameter is applied.""" 32 33 sensitivities = None 34 r_means = [] 35 g_means = [] 36 b_means = [] 37 38 with its.device.ItsSession() as cam: 39 props = cam.get_camera_properties() 40 its.caps.skip_unless(its.caps.compute_target_exposure(props)) 41 sync_latency = its.caps.sync_latency(props) 42 43 debug = its.caps.debug_mode() 44 largest_yuv = its.objects.get_largest_yuv_format(props) 45 if debug: 46 fmt = largest_yuv 47 else: 48 match_ar = (largest_yuv['width'], largest_yuv['height']) 49 fmt = its.objects.get_smallest_yuv_format(props, match_ar=match_ar) 50 51 expt, _ = its.target.get_target_exposure_combos(cam)['midSensitivity'] 52 sens_range = props['android.sensor.info.sensitivityRange'] 53 sens_step = (sens_range[1] - sens_range[0]) / float(NUM_STEPS-1) 54 sensitivities = [ 55 sens_range[0] + i * sens_step for i in range(NUM_STEPS)] 56 57 for s in sensitivities: 58 req = its.objects.manual_capture_request(s, expt) 59 cap = its.device.do_capture_with_latency( 60 cam, req, sync_latency, fmt) 61 img = its.image.convert_capture_to_rgb_image(cap) 62 its.image.write_image(img, '%s_iso=%04d.jpg' % (NAME, s)) 63 tile = its.image.get_image_patch(img, 0.45, 0.45, 0.1, 0.1) 64 rgb_means = its.image.compute_image_means(tile) 65 r_means.append(rgb_means[0]) 66 g_means.append(rgb_means[1]) 67 b_means.append(rgb_means[2]) 68 69 # Draw a plot. 70 pylab.plot(sensitivities, r_means, '-ro') 71 pylab.plot(sensitivities, g_means, '-go') 72 pylab.plot(sensitivities, b_means, '-bo') 73 pylab.ylim([0, 1]) 74 pylab.title(NAME) 75 pylab.xlabel('Gain (ISO)') 76 pylab.ylabel('RGB means') 77 matplotlib.pyplot.savefig('%s_plot_means.png' % (NAME)) 78 79 # Test for pass/fail: check that each shot is brighter than the previous. 80 for means in [r_means, g_means, b_means]: 81 for i in range(len(means)-1): 82 assert means[i+1] > means[i] 83 84if __name__ == '__main__': 85 main() 86 87